
Towards the Ergodicity of  Hamiltonian Monte Carlo
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The ergodicity of  a Markov chain ensures that it explores the entire 
target distribution as the number of  transitions continues towards 
infinity. More critical to the empirical performance of  a Markov 
chain, however, is geometric ergodicity, which ensures that the chain 
converges to the target distribution geometrically,

Hamiltonian Monte Carlo

Geometric ergodicity is not just a 
theoretical concern.  In practice, the 
lack of  geometric ergodicity 
manifests as chains ignoring 
neighborhoods of  high probability 
and “sticking” in corners of  
parameter space, both of  which 
strongly bias subsequent Monte 
Carlo  estimators.

In order to ensure that algorithms like Hamiltonian Monte Carlo 
yield robust inference we have to understand for which target 
distributions geometric ergodicity will hold, and how a loss of  
geometric ergodicity manifests in the output of  the Markov chain.  
This latter consideration is crucial for constructing the practical 
diagnostics necessary for resilient statistical tools.

One way of  verifying that a Markov chain will be geometrically 
ergodic with respect to a given target distribution is to show that 
the chain tends to drift towards some small set, C.  Verification 
proceeds in two stages.

We first have to establish a 
minorization condition to ensure that 
once a chain reaches the small set 
it will explore the entire target 
distribution.  Mathematically, we 
require that

Then we ensure that the chain will 
converge to the small set by 
establishing a drift condition,

Together the minorization and drift conditions admit an explicitly 
geometric, if  loose, bound on the convergence of  the Markov 
chain, 

Hamiltonian Monte Carlo generates a 
transition by sampling an auxiliary 
momentum, simulating a trajectory in (q, 
p) space, and then projecting back down 
to q.  These trajectories naturally drift 
towards a small set around zero 
suggesting that any function monotonic 
in |q| serves as a drift function. 

Here we consider the log density as a 
drift function for a univariate Gaussian 
target distribution with both an exact 
and numerical simulation of  the 
Hamiltonian trajectory.

Generalizing these results to a broader class of  univariate target 
distributions and, ultimately, multivariate target distributions will 
require leveraging the underlying geometric structure of  
Hamiltonian Monte Carlo and interfacing with deep results from 
Hamiltonian chaos and dynamical systems.

One difficulty with drift conditions is that even if  we can establish 
a drift condition the resulting bounds tend to be extremely weak, 
as evident even in the simple Gaussian case.  Tighter bounds may 
be found by considering Hamiltonian Monte Carlo as a second-
order stochastic process and using related techniques to constrain 
the relaxation towards the mass of  the target distribution.

Hamil tonian Monte Car lo uses 
techniques from differential geometry 
to efficiently explore probability 
distributions, admitting practical 
Bayesian inference that scales to the 
frontiers of  applied statistics. 

Here Riemannian Hamiltonian Monte 
Carlo generates a trajectory that sweeps 
through the probability mass of  a high-
dimensional hierarchical model.
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Hamiltonian Drift Conditions

The drift condition 
requires a function 
t h a t u n i f o r m l y 
sh r inks fo r any 
initial state outside 
of  the small set, and 
uniformly shrinks 
given an arbitrary 
offset within the 
small set.

q

p

q0

1

N

NX

n=1

f(qn) ! N
✓
E$[f ] ,

�2

Ne↵

◆

hUi(q)  �U(q) + b IC(q)

 (1� ✏)rn + fn(�, b, C) grn(�, b, C)

✓
1 +

b

1� �
+ U(q0)

◆

 1e-06

 0.0001

 0.01

 1

 1  10  100

|| δ
q 0

 T
N

 - 
π 

||

N

Under certain stability conditions the numerical result is only a 
perturbation of  the true result, and the failure of  those stability 
conditions manifests in numerical divergences that can be 
monitored as a geometric ergodicity diagnostic!

An important consequence of  geometric ergodicity is that Monte 
Carlo estimators from finite iterations are well-behaved, as 
formalized in the Markov Chain Monte Carlo Central Limit Theorem,
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