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D’Agostini [1] offers a seemingly unique approach to the notoriously difficult problem of
deconvolving a measured spectrum n (E) to recover the underlying true distribution n (C').
Instead of focusing on the ill-posed inversion of the transfer matrix

n(E;) o< Y P(E|C)n(C;) =Y Hyn (Cj)
J J
the approach begins with the inverse problem
n(Ci) =Y P(Ci|E;)n(E;) =) Myn(E)).
J J

If the true distribution is known a priori, the M;; are given by Bayes Theorem

H;;P(C)
>k HjrP (Cy)
Were the true distribution P (C}) available, however, the problem would be trivial.
D’Agostini offers an iterative approach. Beginning with a guess for the true distribution,

the M;; are computed and used to estimate the true distribution from the measured spec-
trum,

Ml’j =

where

The P (Ci) become the new guess, and the calculation repeated.



No proof is given that the algorithm estimates P (C;) will converge to the true distri-
bution P (C;); D’Agostini relies entirely on simulation studies that converge to reasonable
results within a few estimates. If the algorithm is allowed to continue past these initial
iterations, however, the estimates begin to diverge.

This behavior can be illuminated by taking a deeper look at the update equations.
First, define

n(Ei) = ZHijﬁ(Cj)
’fL(EZ) = NtrueZHijp(Cj) .

J
D’Agostini’s application of Bayes Theorem becomes

A = il (G
Y Zkij:P(Ck)
_ o HiP(G)
MZ] - NtrueW

with the resulting estimates

i |5 i (Ej)
P(C)) ; ZHﬂd(E]) P(C))
where
_ n(E)
4 () = n (E;)

Each P (C;) is scaled by the weighted sum of observational deviations d (£}), with the
weights given by the probability of C; contributing to Ej;. In fact, if one considers the



columns of the transfer matrix as probabilities then the update equation can be written as
the average deviation caused by Cj,

P (Ci) o (d(E))iP (Cy).

The corrections push the P (C;) towards a solution consistent with the data (Fig 1). As
the deviations d (E;) decrease, the corrections become smaller until the algorithm finally
converges to a solution with

and

P(C;) x P(C)).

If the algorithm converges to a consistent solution they why does apparently divergent
behavior arise in the simulation studies presented by D’Agostini?

Consider the original problem of inverting the transfer matrix. The matrix is singular,
and the inversion fails, because there are infinitely many input spectra that will produce the
measured spectrum. Most of these spectra are far from the smooth distribution expected
from theory.

The D’Agostini algorithm isn’t diverging - it’s just converging to one of the infinite
irregularly shaped distributions. In the first few iterations the estimates P (C;) feature
residual smoothness from the initial guess that make is appear well behaved. As the
iterations proceed, however, the memory of this smoothness vanishes in favor of an estimate
better fitting the statistical fluctuations in the data.

From this perspective, the D’Agostini algorithm is basically an iterative matrix inver-
sion algorithm (or pseudo inversion if the transfer matrix isn’t square), vulnerable to all of
the problems it claimed to have solved.

Modern Bayesian approaches [2] [3], place priors on the smoothness of the underlying
distribution, regularizing the problem and providing well behaved solutions consistent with
the underlying true distribution.
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Figure 1: Example of the D’Agostini algorithm in practice. (a) One starts with an initial
guess that may have no resemblance to the true distribution. (b) The observed spectrum
consistent with the guess is compared to the measured spectrum and (c) the deviations
d (E) computed. (d) The deviations are used to compute the corrections, which (e) give
the updated guess.



