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Because tree growth is sensitive to the surrounding environmental, in particular the ambient
climate, continual measurements of tree growth are a powerful way to learn about the history
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of changes to that environment. In this exercise we’ll explore a Bayesian approach to modeling
and drawing inferences from tree diameter data measurements, with a focus on capturing the
underlying data generating process. At the end I’ll discuss how this exercise was integrated
into a two-day interactive workshop.

1 Familiarizing Ourselves With The Data

Before building any models we need to understand is being modeled. In particular we need to
develop our understanding of the data and its provenance.

1.1 Data Provenance

The data with which we’ll be working consists of diameter at breast height, or DBH,
measurements. These measurements are made by wrapping a measuring tape around the
trunk of a tree at a height of 1.37 meters, approximating the breast height of an average
human (Figure 1). This height is high enough to avoid the tree roots and forest floor but low
enough to be accessible to researchers making the measurements. Diameter observations are
given by dividing the recorded circumference by 𝜋.

When the diameter of a tree is first measured it is marked with a tag to indicate the breast
height used. All future diameter measurements are made at the tag height to ensure consistency
across time.

Figure 1: Tree diameters are measured by wrapping a measuring tape around the trunk of a
tree 1.37 meters above the ground and then dividing the recorded circumference by
𝜋. Here Robert Ettinger is recording tree diameters in the Pacific Northwest. Photo
:copyright: Ailene Ettinger, used with permission.
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The H.J. Andrews Experimental Forest and Long Term Ecological Research Program has
censused trees in forests across the Pacific Northwest every five or six years for decades. In
addition to the tree diameter additional physiological attributes, such as tree vigor and the
condition of the tree crown and stem are also recorded. If a tree is found to have died since it
was last measured then a mortality assessment is also performed. For intimate detail on the
measurement procedures and the structure of the resulting data see the Pacific Northwest Per-
manent Sample Plot Program Protocol for Tree Measurements and Mortality Assessments.

In this exercise we will be focusing on data collected from forests around Mount Rainier
(Figure 2). These forests cover a wide range of elevations and other environmental conditions
which make them particularly well-suited for studying various aspects of an evolving climate.
That said here we will consider only trees that are isolated to a single stand of forest.

Figure 2: The forests around Mount Rainier span a diversity of environmental conditions.
Photo courtesy of WikiMedia, https://commons.wikimedia.org/wiki/File:
Mount_Rainier_panorama_2.jpg.

1.2 Code Environment Set Up

With the provenance established we’re ready to take our first peak at the data itself. We’ll
start by configuring our local R environment for some reasonably aesthetic visualizations.

par(family="serif", las=1, bty="l",
cex.axis=1, cex.lab=1, cex.main=1,
xaxs="i", yaxs="i", mar = c(5, 5, 3, 5))

c_light <- c("#DCBCBC")
c_light_highlight <- c("#C79999")
c_mid <- c("#B97C7C")
c_mid_highlight <- c("#A25050")
c_dark <- c("#8F2727")
c_dark_highlight <- c("#7C0000")
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c_light_teal <- c("#6B8E8E")
c_mid_teal <- c("#487575")
c_dark_teal <- c("#1D4F4F")

1.3 Exploratory Data Analysis

We now read in our data for stand AV06. The columns and their possible values are care-
fully documented in Pacific Northwest Permanent Sample Plot Program Protocol for Tree
Measurements and Mortality Assessments.

stand_tree_data <- read.csv('data/TV01002_v17_AV06.csv', skip=5)

To ensure that visualizations fit nicely into this document I’m going to restrict consideration
to only the first 22 trees in the stand.

tree_ids <- unique(stand_tree_data$TREEID)

N_trees <- 22
tree_ids <- tree_ids[1:N_trees]

In this nominal format repeated measurements of a given tree are not necessarily organized
next to each other. Because we are particularly interested in tree diameter growth it will be
much more convenient to collect repeated measurements together and construct indices that
allow us to readily isolate the data for a single tree.

Note how we’re using our understanding of the data generating process to motivate how we
format and visualize the data. Exploratory data analysis is always done in the context of as
assumed, if conceptual, data generating process!

tree_N_obs <- c()
tree_start_idxs <- c()
tree_end_idxs <- c()
tree_years <- c()
tree_dbhs <- c()
tree_vigors <- c()
tree_species <- c()
tree_statuses <- c()
tree_notes <- c()

idx <- 1

4

https://github.com/lizzieinvancouver/bayesian2024ubc/tree/main/data/treestands/metadata/PSP_tree_measurement_protocol_v2019.pdf
https://github.com/lizzieinvancouver/bayesian2024ubc/tree/main/data/treestands/metadata/PSP_tree_measurement_protocol_v2019.pdf


for (id in tree_ids) {
# Isolate observations for given tree
tree_data <- stand_tree_data[stand_tree_data['TREEID'] == id,]

years <- tree_data[,'YEAR']
dbhs <- tree_data[,'DBH']
vigors <- tree_data[,'TREE_VIGOR']
species <- tree_data[,'SPECIES']
statuses <- tree_data[,'TREE_STATUS']
notes <- tree_data[,'CHECK_NOTES']

# Append tree data
N_obs <- length(years)
tree_N_obs <- c(tree_N_obs, N_obs)

start_idx <- idx
end_idx <- idx + N_obs - 1
idx <- idx + N_obs
tree_start_idxs <- c(tree_start_idxs, start_idx)
tree_end_idxs <- c(tree_end_idxs, end_idx)

tree_years <- c(tree_years, years)
tree_dbhs <- c(tree_dbhs, dbhs)
tree_species <- c(tree_species, species)
tree_vigors <- c(tree_vigors, vigors)
tree_statuses <- c(tree_statuses, statuses)
tree_notes <- c(tree_notes, notes)

}

Each tree diameter measurement is accompanied by many different assessments of the tree’s
condition. For our initial investigation I take a look at tree vigor which is a general quan-
tification of health. We can communicate tree vigor in our visualizations by coloring each
observation according to the five possible statuses.

vigor_cols <- list("1" = c_dark, "2" = c_mid, "3" = c_light,
"U" = c_mid_teal, "M" = "black")

This reorganization of the data makes it straightforward to plot a time series of measurements
for each tree. Each observation is colored according to the tree vigor. Observations of dead
trees with TREE_VIGOR = "M" are given NA diameters values; these will be denoted with gray
rectangles at the corresponding observation year.
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plot_tree_data <- function(t) {
tree_idxs <- tree_start_idxs[t]:tree_end_idxs[t]

years <- tree_years[tree_idxs]
dbhs <- tree_dbhs[tree_idxs]
vigors <- tree_vigors[tree_idxs]
cols = sapply(vigors, function(v) vigor_cols[[v]])

xlims <- range(years)
delta <- xlims[2] - xlims[1]
xlims[1] <- xlims[1] - 0.1 * delta
xlims[2] <- xlims[2] + 0.1 * delta

ylims <- range(dbhs, na.rm=TRUE)
delta <- ylims[2] - ylims[1]
ylims[1] <- ylims[1] - 0.1 * delta
ylims[2] <- ylims[2] + 0.1 * delta

plot(years, dbhs,
main=paste0(tree_ids[t], "\nLocal Tree Index = ", t),
pch=16, cex=0.8, col=cols,
xlab="Year", xlim=xlims, ylab="DBH", ylim=ylims)

na_idxs <- which(is.na(dbhs))
for (na_idx in na_idxs) {

abline(v=years[na_idx], col='#DDDDDD', lwd=3)
}

}

So how does our data look?

par(mfrow=c(3, 3))
for (t in 1:18) {
plot_tree_data(t)

}
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par(mfrow=c(2, 3))
for (t in 19:N_trees) {
plot_tree_data(t)

}
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Most of the trees exhibit clean sequences of measurements that increase with time, consistent
with persistent tree growth.

par(mfrow=c(1, 1))

plot_tree_data(10)
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Some trees, however, have perished resulting in NA diameter measurements.

plot_tree_data(2)
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Still others contain only a few measurements which limits how well we can constrain potential
growth models.

plot_tree_data(16)
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For our initial analysis let’s clean up the data by removing observations of dead trees, DBH
= NA and TREE_VIGOR = "M". Moreover let’s remove trees without at least four observations
entirely. Why at least four observations? Eventually we will want to use four-parameter
growth models that require at least four observations to be identified.

good_tree_ids <- c()
tree_N_obs <- c()
tree_start_idxs <- c()
tree_end_idxs <- c()
tree_years <- c()
tree_dbhs <- c()
tree_vigors <- c()
tree_species <- c()
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tree_statuses <- c()
tree_notes <- c()

idx <- 1

for (id in tree_ids) {
# Isolate observations for given tree
tree_data <- stand_tree_data[stand_tree_data['TREEID'] == id,]

years <- tree_data[,'YEAR']
dbhs <- tree_data[,'DBH']
vigors <- tree_data[,'TREE_VIGOR']
species <- tree_data[,'SPECIES']
statuses <- tree_data[,'TREE_STATUS']
notes <- tree_data[,'CHECK_NOTES']

# Remove post-mortality observations
good_obs <- which(vigors != "M")
years <- years[good_obs]
dbhs <- dbhs[good_obs]
vigors <- vigors[good_obs]
species <- species[good_obs]
statuses <- statuses[good_obs]
notes <- notes[good_obs]

# Drop tree if there are not at least four observations
N_obs <- length(years)
if (N_obs < 4) next

# Append tree data
good_tree_ids <- c(good_tree_ids, id)
tree_N_obs <- c(tree_N_obs, N_obs)

start_idx <- idx
end_idx <- idx + N_obs - 1
idx <- idx + N_obs
tree_start_idxs <- c(tree_start_idxs, start_idx)
tree_end_idxs <- c(tree_end_idxs, end_idx)

tree_years <- c(tree_years, years)
tree_dbhs <- c(tree_dbhs, dbhs)
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tree_vigors <- c(tree_vigors, vigors)
tree_species <- c(tree_species, species)
tree_statuses <- c(tree_statuses, statuses)
tree_notes <- c(tree_notes, notes)

}

N <- length(tree_years)
N_trees <- length(good_tree_ids)

This leaves 25 trees with well-behaved enough observations to inform the common growth
models that we will consider below.

par(mfrow=c(3, 3))

for (t in 1:N_trees) {
plot_tree_data(t)

}
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2 Modeling Tree Growth

Our exploratory data analysis didn’t reveal any behavior that we didn’t already expected
from our understanding of the data generating process. We are now ready to model that
data generating process, from the growth of an individual tree to the imperfect diameter
measurements.

2.1 Tree Growth Models

Tree growth is a complicated process. In theory growth is moderated by the ambient envi-
ronment which can change drastically across time. For example a tree with full exposure to
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sunlight should grow faster than a tree under the shadow of neighboring trees. Likewise limited
access to water or other nutrients can inhibit growth. Moreover the physiological processes
that drive growth might be complicated in of themselves, for example varying with the age of
a tree.

In this section we will review some relatively simple growth models that might be useful for
initial analyses. The construction of these models does require some nontrivial mathematics,
and it is absolutely okay if those mathematics are inaccessible to some readers. Successful
analyses often require collaboration between people who contribute scientific expertise and
people who contribute mathematical expertise!

2.1.1 Linear Diameter Growth

A mathematically simple model for tree growth assumes that the diameter at breast height
increases linearly with time (Figure 3)

𝑑(𝑡) = 𝑑0 + 𝛽 ⋅ (𝑡 − 𝑡0).

d0

d(t)

t

Figure 3: In a linear growth model a tree diameter grows linear with time.

Linear diameter growth over an extended time is often unrealistic, but it can be a reasonable
approximation for more complicated growth dynamics over shorter intervals of time.
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2.1.2 Linear Mass Growth

Linear diameter growth, however, also has awkward physiological consequences. As a tree
grows a fixed increase in diameter requires larger and larger increases in overall mass.

If the energy inputs to a tree are fixed then an arguably more realistic model would assume
that mass, and not diameter, increases linearly with time. To model this mathematically let’s
assume that we can approximate trees as cylinders with constant density so that the total
mass is related to the diameter by

𝑚 = density ⋅ volume

= 𝜌 ⋅ 𝜋 (𝑑
2)

2
ℎ

= (𝜋
4 ⋅ 𝜌 ⋅ ℎ) 𝑑2

= 𝐶 𝑑2.

For convenience I’ve absorbed everything but the diameter into a single constant in that last
step.

If the tree mass grows linearly with time and the height remaining constant then

𝛿𝑚 ⋅ 𝑡 = 𝑚(𝑡) − 𝑚0
= 𝐶 𝑑(𝑡)2 − 𝐶 𝑑2

0,

or upon solving for 𝑑(𝑡),

𝛿𝑚 ⋅ 𝑡 = 𝐶 𝑑(𝑡)2 − 𝐶 𝑑2
0

𝛿𝑚
𝐶 ⋅ 𝑡 = 𝑑(𝑡)2 − 𝑑2

0

𝑑(𝑡)2 = 𝑑2
0 + 𝛿𝑚

𝐶 ⋅ 𝑡

𝑑(𝑡) = √𝑑2
0 + 𝛿𝑚

𝐶 ⋅ 𝑡

𝑑(𝑡) = √𝑑2
0 + 𝛽 ⋅ 𝑡.

Because of the square root function the diameter growth will decelerate as a tree ages, but
never quite stop (Figure 4).

2.1.3 Gompertz Model

In practice both the linear and square root growth models will be too inflexible to adequately
model tree diameter growth for the decades that our observations span. One particularly
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d0

d(t)

t

Figure 4: Under idealized assumptions a linear increase in the mass of a tree results in a square
root increase in the diameter of the tree.

common class of models assume that the diameter growth follows a sigmoidal curve, allowing
for accelerated growth at early ages, constant growth at intermediate ages, and decelerating
growth at later ages. There are many mathematical curves that fit this qualitative shape,
but a particularly common choice in many ecological applications is the Gompertz family of
curves,

𝑑(𝑡) = 𝑑max exp(−𝑏 exp(−𝑐 𝑡)).
To ensure monotonically increasing growth all three parameters must be positive.

The interpretation of the parameter 𝑑max is straightforward: it determines the asymptotic
diameter that a tree will approach as it ages. On the other hand the interpretation of the
other two parameters is less clear, which can frustrate a principled use of this model in a real
analysis.

One way to make the Gompertz family of curves more interpretable is to find an alternative
parameterization where each parameter directly corresponds to a meaningful behavior. For
example we might parameterize the curves in terms of their linear behavior at intermediate
times.

To that end let’s introduce the intermediate time 𝜏 where a given Gompertz curve reached
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half of its asymptotic diameter,

𝑑max
2 = 𝑑(𝜏) = 𝑑max exp(−𝑏 exp(−𝑐 𝜏)),

or, solving for 𝜏 ,
𝜏 = log 𝑏 − log log 2

𝑐 .
The rate of growth at 𝜏 is then given by

𝛽 = d𝑑
d𝑡 (𝜏) = log 2

2 𝑑max 𝑐.

Conveniently the tree values 𝑑max, 𝜏 , and 𝛽 completely determine a Gompertz curve. In terms
of these parameters the Gompertz family of curves becomes (Figure 5)

𝑑(𝑡) = 𝑑max exp (− log 2 ⋅ exp (− 2
log 2

𝛽
𝑑max

(𝑡 − 𝜏)))

which is fortunately straightforward to implement in practice.

τ

dmax

dmax/2

β · (t− τ) + dmax/2

d(t)

t

Figure 5: The Gompertz family of curves provides a sigmoidal model for tree diameter growth.
Here we’ve parameterized each curve in terms of its asymptotic diameter, 𝑑max, the
time at which curve reaches half of this value, 𝜏 , and the derivative at 𝜏 , 𝛽.

There are many ways of adding more flexible to the Gompertz model that could be useful when
analyzing tree growth data. For example replacing 𝑡 − 𝜏 with a polynomial would allow for
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more complicated, potentially even asymmetric, behavior at both young and old ages. Here
we will consider a less sophisticated addition: a non-zero initial diameter,

𝑑(𝑡) = 𝑑0 + 𝛿𝑑 exp (− log 2 ⋅ exp (− 2
log 2

𝛽
𝛿𝑑 (𝑡 − 𝜏)) .)

This offset could, for instance, allow the model to accommodate different growth dynamics for
very young trees before sigmoidal growth kicks in.

2.2 Measurement Model

Now that we have some candidate models for how tree diameter grows with time we need to
consider how those diameters are actually measured.

The diameter at breast height measurement procedure is not infinitely precise. There can be
errors in reading the measuring tape, misalignments of the measuring tape, non-uniforming
in the diameter of the tree, inconsistencies from measurement to measurement, and more. A
useful measurement model needs to account for not only how strongly these potential sources of
variation can affect the diameter at breast height measurements but also what overall variation
is consistent with our understanding of the procedure.

For example let’s consider how much misalignment of the measuring tape can affect diameter
measurements. As we did in the linear mass growth model let’s assume that trees are well
approximated by a cylinder of radius 𝑟, diameter 𝑑 = 2 𝑟, and height ℎ, with all lengths in
units of centimeters.

In a perfect diameter at breast height measurement the measuring tape will form a circle
with the same circumference as the tree at the tag height. Consequently we can recover the
diameter of the tree by dividing the measured length by 𝜋,

𝑑 = 𝐶flat
𝜋 .

When tape is tilted, however, it will form not a circle but rather an ellipse. If the maximum
offset is given by 𝛿 then the shape of the ellipse will be determined by the semi-minor axis
(Figure 6)

𝑏 = 𝑟 = 𝑑
2

and the semi-major axis
𝑎 = 1

2
√𝑑2 + 𝛿2.

As we would hope this reduces back to a circle with 𝑎 = 𝑏 = 𝑟 when 𝛿 → 0.

Unfortunately the perimeter of an ellipse does not admit a simple mathematical form; instead
it is given by a complicated function known as an elliptic integral. For those interested in
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Tag

δ

d = 2 · r = 2 · b

δ

√
d2 + δ2 = 2 · a

Figure 6: When misaligned a measuring tape wrapped around a cylindrical tree defines an
ellipse. In this case dividing the measured length by 𝜋 does not give the tree diameter
exactly.

learning more Wikipedia has a nice discussion at https://en.wikipedia.org/wiki/Ellipse#Cir
cumference. We can, however, approximate the perimeter of an ellipse is a variety of different
ways; again Wikipedia has a clear discussion, https://en.wikipedia.org/wiki/Ellipse#Arc_len
gth.

For example the circumference of this tilted ellipse can be bounded above by

𝐶tilt ≤
√

2 𝜋 √𝑏2 + 𝑎2

≤
√

2 𝜋 √(𝑑
2)

2
+ (1

2)
2

(𝑑2 + 𝛿2)

≤
√

2 𝜋 1
2

√𝑑2 + 𝑑2 + 𝛿2

≤
√

2 𝜋 1
2

√2𝑑2 + 𝛿2

≤
√

2 𝜋
√

2 𝑑
2

√1 + ( 𝛿
2 𝑑)

2

≤ 𝜋 𝑑 √1 + ( 𝛿
2 𝑑)

2
.
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If the offset 𝛿 is much smaller than the actual tree diameter 𝑑 then this upper bound will be
a useful conservative approximation to the exact length of the tilted measuring tape,

𝐶tilt ≈ 𝜋 𝑑 √1 + ( 𝛿
2 𝑑)

2
.

Using the perimeter of the tilted ellipse in place of the perimeter of a flat circle does not recover
the diameter of the tree,

𝐶tilt
𝜋 = 𝑑 √1 + ( 𝛿

2 𝑑)
2

≥ 𝑑.

The larger perimeter always biases the recovered diameter to larger values. When 𝛿 is unknown
this bias manifests as an asymmetric variability in the measurements.

Note that this measurement variability is not additive but rather multiplicative. Indeed mul-
tiplicative measurement variability is common when working with measurements of positive
quantities. One way to recover additive measurement variability is to work with log diame-
ters,

log 𝐶tilt
𝜋 = log 𝑑 + 1

2 log (1 + ( 𝛿
2 𝑑)

2
) .

In practice we can sometimes approximate the multiplicative measurement variability with
additive measurement variability,

𝐶tilt
𝜋 ≈ 𝑑 + 𝑑0

⎛⎜
⎝

√1 + ( 𝛿
2 𝑑)

2
− 1⎞⎟

⎠
,

where 𝑑0 is the baseline diameter at which we want this approximation to be best. This
approximation is decent if all of our measurements are limited to a narrow range of tree
diameters, but if our data spans measurements of very small and very large trees then the
approximation can break down at the extremes.

Assuming that an additive measurement model is a good enough approximation what do
these variabilities look like in practice? If the offsets never exceed ten percent of the actual
tree diameter, which allows for some pretty strong misalignments, then

𝛿
𝑑 ≈ 0.1,

𝛿
2 𝑑 ≈ 0.05,

and

√1 + ( 𝛿
2 𝑑)

2
≈ 1.001.
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The deviation from the measured diameter to the true diameter is exceedingly small!

For example if 𝑑0 = 50 cm then the scale of the approximate additive measurement variability
would be orders of magnitude smaller,

𝑑0
⎛⎜
⎝

√1 + ( 𝛿
2 𝑑)

2
− 1⎞⎟

⎠
≈ 0.05 cm,

which we can round up to about a millimeter. This may appear surprisingly small but it’s all
a consequence of the geometry: relatively large warpings of a circle don’t change the diameter
as much as we might expect!

Analysis of the other potential sources of variation gives similar results: multiplicative variation
is more realistic but additive variation can be a reasonable approximation, and the scale of
the linear variation is unlikely to exceed a millimeter or so. For this exercise we’ll assume the
simpler linear measurement model,

̂𝑑(𝑡) ∼ normal(𝑑(𝑡), 𝜎),

with our domain expertise excluding values of 𝜎 much larger than 0.1 cm. To be particularly
conservative we will allow for measurement variabilities as large as 0.25 cm.

3 Demonstrative Analyses

Having brainstormed some possible models let’s try to incorporate them into a Bayesian anal-
ysis using the probabilistic programming tool Stan, in particular it’s R interface RStan.

3.1 Set Up

First and foremost we need to load the rstan package into our local R environment and
configure it.

library(rstan)
rstan_options(auto_write = TRUE) # Cache compiled Stan programs
options(mc.cores = parallel::detectCores()) # Parallelize chains
parallel:::setDefaultClusterOptions(setup_strategy = "sequential")

Next we’ll load my recommended Markov chain Monte Carlo diagnostic and analysis code.
The code itself as well as documentation can be found at https://github.com/betanalpha/mc
mc_diagnostics.
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util <- new.env()
source('stan_utility_rstan.R', local=util)

3.2 Homogeneous Linear Model

Let’s start as simply as possible: we’ll assume a linear diameter growth model where all trees
in the data set are allowed to have different initial diameters but all grow at the same rate. I
will use normal containment prior models to softly constrain the initial heights below 150 cm,
the growth rate below 2 cm per year in magnitude, and the measurement variability below
0.25 cm. For an introduction to normal containment prior models see https://betanalpha.git
hub.io/assets/case_studies/prior_modeling.html#3_One-Dimensional_Expertise.

To facilitate the analysis of our Stan program we will also save the inferred diameter of each
tree along a grid of times.

data <- mget(c("N", "N_trees", "tree_N_obs",
"tree_start_idxs", "tree_end_idxs",
"tree_years", "tree_dbhs"))

year_grid <- seq(1975, 2020, 1)
N_year_grid <- length(year_grid)

data$N_year_grid <- N_year_grid
data$year_grid <- year_grid

fit <- stan(file="stan_programs/homogeneous_linear_growth.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

The lack of diagnostic failures is consistent with Stan being able to accurately quantify our
posterior uncertainties.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.
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samples <- util$extract_expectands(fit)
base_samples <- util$filter_expectands(samples,

c('d0', 'beta', 'sigma'),
check_arrays=TRUE)

util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Unfortunately posterior retrodictive checks show a poor fit for many of the trees in our data
set. This suggests that different trees might be growing at different rates.

plot_cont_marginal_quantiles <- function(xs, preds,
display_xlims=NA,
display_ylims=NA,
title="",
x_name="", y_name="") {

probs = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
cred <- sapply(preds, function(pred)

quantile(c(t(pred), recursive=TRUE),
probs=probs))

if (is.na(display_xlims)) {
xlims <- range(xs)

} else {
xlims <- display_xlims

}

if (is.na(display_ylims)) {
ylims <- c(min(cred[1,]), max(cred[9,]))

} else {
ylims <- display_ylims

}

plot(1, type="n", main=title,
xlim=xlims, xlab=x_name,
ylim=ylims, ylab=y_name)

polygon(c(xs, rev(xs)), c(cred[1,], rev(cred[9,])),
col = c_light, border = NA)

polygon(c(xs, rev(xs)), c(cred[2,], rev(cred[8,])),
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col = c_light_highlight, border = NA)
polygon(c(xs, rev(xs)), c(cred[3,], rev(cred[7,])),

col = c_mid, border = NA)
polygon(c(xs, rev(xs)), c(cred[4,], rev(cred[6,])),

col = c_mid_highlight, border = NA)
lines(xs, cred[5,], col=c_dark, lwd=2)

}

par(mfrow=c(3, 3), mar = c(5, 4, 2, 1))

for (t in 1:data$N_trees) {
idxs <- data$tree_start_idxs[t]:data$tree_end_idxs[t]
years <- data$tree_years[idxs]
dbhs <- data$tree_dbhs[idxs]

pred_names <- sapply(1:data$N_year_grid,
function(n) paste0('dbh_grid_pred[',

t, ',', n, ']'))
preds <- samples[pred_names]
plot_cont_marginal_quantiles(data$year_grid, preds,

title=paste0(tree_ids[t], ", t = ", t),
x_name="Year", y_name="DBH (cm)")

points(years, dbhs, col="white", pch=16, cex=1.2)
points(years, dbhs, col="black", pch=16, cex=0.8)

}
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The inadequacy of this first model is also hinted at in the inferred posterior behavior. Marginal
posterior distributions for all of the initial diameters appears to be reasonable.

plot_disc_marginal_quantiles <- function(samples, names, x_name="") {
N <- length(names)
idx <- rep(1:N, each=2)
xs <- sapply(1:length(idx), function(k)

if(k %% 2 == 0) idx[k] + 0.5 else idx[k] - 0.5)

probs = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
cred <- sapply(1:N, function(n)

quantile(c(t(samples[[names[n]]]), recursive=TRUE),
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probs=probs))
pad_cred <- do.call(cbind, lapply(idx, function(n) cred[1:9,n]))

ylims <- c(min(cred[1,]), max(cred[9,]))

plot(1, type="n",
xlim=c(0.5, N + 0.5), xlab=x_name,
ylim=ylims, ylab="Marginal\nPosterior Quantiles")

polygon(c(xs, rev(xs)), c(pad_cred[1,], rev(pad_cred[9,])),
col = c_light, border = NA)

polygon(c(xs, rev(xs)), c(pad_cred[2,], rev(pad_cred[8,])),
col = c_light_highlight, border = NA)

polygon(c(xs, rev(xs)), c(pad_cred[3,], rev(pad_cred[7,])),
col = c_mid, border = NA)

polygon(c(xs, rev(xs)), c(pad_cred[4,], rev(pad_cred[6,])),
col = c_mid_highlight, border = NA)

for (n in 1:N) {
lines(xs[(2 * n - 1):(2 * n)], pad_cred[5,(2 * n - 1):(2 * n)],

col=c_dark, lwd=2)
}

}

par(mfrow=c(1, 1), mar = c(5, 4, 2, 1))

d0_names <- sapply(1:data$N_trees, function(t) paste0('d0[', t, ']'))
plot_disc_marginal_quantiles(samples, d0_names, "d0")
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Similarly inferences for the shared growth rate don’t appear to be out of order.

util$plot_expectand_pushforward(samples[["beta"]], 25,
display_name="beta")
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Inferences for the measurement variability, however, concentrate at oddly large values.

util$plot_expectand_pushforward(samples[["sigma"]], 25,
display_name="sigma")
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Indeed they concentrate at values far above the soft threshold of 0.25 cm that our prior model
tries to enforce. Note the factor of 2 when evaluating the prior probability densities because
we’re plotting a half-normal probability density function and not a regular normal probability
density function.

util$plot_expectand_pushforward(samples[["sigma"]], 100,
display_name="sigma", flim=c(0, 2))

xs <- seq(0, 2, 0.01)
ys <- 2 * dnorm(xs, 0, 0.25 / 2.57)
lines(xs, ys, lwd=2, col=c_light)
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What’s happening here is that the posterior distribution tries to accommodate the data how-
ever it can. Because the growth model isn’t flexible enough to accommodate the behavior
of each individual tree the measurement model has to compensate by inflating 𝜎 so that the
measurement variability envelopes as much of the residual deviation as possible.

3.3 Heterogeneous Linear Model

In general there could be many reasons why the posterior retrodictive performance of our
initial model was poor. One of the most prominent is the assumption of a common growth
rate amongst all of the trees. Let’s see if allowing the growth rate to vary from tree to tree
results in a better fit.

fit <- stan(file="stan_programs/heterogeneous_linear_growth.stan",
data=data, seed=8438338,
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warmup=1000, iter=2024, refresh=0)

Fortunately there are no signs that our computed inferences might be untrustworthy.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectands(fit)
base_samples <- util$filter_expectands(samples,

c('d0', 'beta', 'sigma'),
check_arrays=TRUE)

util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Overall the posterior retrodictive performance is much improved.

par(mfrow=c(3, 3), mar = c(5, 4, 2, 1))

for (t in 1:data$N_trees) {
idxs <- data$tree_start_idxs[t]:data$tree_end_idxs[t]
years <- data$tree_years[idxs]
dbhs <- data$tree_dbhs[idxs]

pred_names <- sapply(1:data$N_year_grid,
function(n) paste0('dbh_grid_pred[',

t, ',', n, ']'))
preds <- samples[pred_names]
plot_cont_marginal_quantiles(data$year_grid, preds,

title=paste0(tree_ids[t], ", t = ", t),
x_name="Year", y_name="DBH (cm)")

points(years, dbhs, col="white", pch=16, cex=1.2)
points(years, dbhs, col="black", pch=16, cex=0.8)

}
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That some trees show signs of of accelerating growth in earlier years and decelerating growth
in later years that our model cannot accommodate.

par(mfrow=c(2, 2), mar = c(5, 4, 2, 1))

for (t in c(1, 8, 9, 11)) {
idxs <- data$tree_start_idxs[t]:data$tree_end_idxs[t]
years <- data$tree_years[idxs]
dbhs <- data$tree_dbhs[idxs]

pred_names <- sapply(1:data$N_year_grid,
function(n) paste0('dbh_grid_pred[',
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t, ',', n, ']'))
preds <- samples[pred_names]
plot_cont_marginal_quantiles(data$year_grid, preds,

title=paste0(tree_ids[t], ", t = ", t),
x_name="Year", y_name="DBH (cm)")

points(years, dbhs, col="white", pch=16, cex=1.2)
points(years, dbhs, col="black", pch=16, cex=0.8)

}
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The inadequacy of this heterogeneous linear growth model is also hinted at by the continued
concentration of the marginal posterior distribution for 𝜎 at values above the soft threshold
encoded in our prior model. That said the deviation is much weaker than it was before,
suggesting that the inadequacy has been reduced.
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par(mfrow=c(1, 1), mar = c(5, 4, 2, 1))

util$plot_expectand_pushforward(samples[["sigma"]], 50,
display_name="sigma", flim=c(0, 0.75))

xs <- seq(0, 2, 0.01)
ys <- 2 * dnorm(xs, 0, 0.25 / 2.57)
lines(xs, ys, lwd=2, col=c_light)
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3.4 Heterogeneous Gompertz Model

A useful check for model adequacy doesn’t just indicate that there might be a problem but also
informs us of what the problem might be. The previous posterior retrodictive check suggested
that we need a more flexible growth model that can accommodate early accelerated growth
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and late decelerated growth. Fortunately this is exactly what a Gompertz growth model can
provide, especially with an offset initial diameter.

fit <- stan(file="stan_programs/heterogeneous_gompertz_growth.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Unfortunately the diagnostics seem to be extremely upset indicating that our posterior com-
putation is not to be trusted.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

Chain 1: 45 of 1024 transitions (4.4%) diverged.

Chain 2: 31 of 1024 transitions (3.0%) diverged.
Chain 2: 20 of 1024 transitions (1.953125%) saturated the maximum treedepth of 10.

Chain 3: 34 of 1024 transitions (3.3%) diverged.

Chain 4: 26 of 1024 transitions (2.5%) diverged.
Chain 4: 24 of 1024 transitions (2.34375%) saturated the maximum treedepth of 10.

Divergent Hamiltonian transitions result from unstable numerical
trajectories. These instabilities are often due to degenerate target
geometry, especially "pinches". If there are only a small number of
divergences then running with adept_delta larger than 0.801 may reduce
the instabilities at the cost of more expensive Hamiltonian
transitions.

Numerical trajectories that saturate the maximum treedepth have
terminated prematurely. Increasing max_depth above 10 should result in
more expensive, but more efficient, Hamiltonian transitions.

samples <- util$extract_expectands(fit)
base_samples <- util$filter_expectands(samples,

c('d0', 'delta_d', 'beta',
'delta_t_half', 'sigma'),

check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)
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d0[18]:
Chain 3: Left tail hat{xi} (1.610) exceeds 0.25!
Chain 4: Left tail hat{xi} (1.670) exceeds 0.25!
Chain 1: hat{ESS} (47.442) is smaller than desired (100)!
Chain 2: hat{ESS} (58.902) is smaller than desired (100)!
Chain 3: hat{ESS} (37.022) is smaller than desired (100)!
Chain 4: hat{ESS} (60.659) is smaller than desired (100)!

delta_t_half[18]:
Chain 1: hat{ESS} (24.466) is smaller than desired (100)!
Chain 2: hat{ESS} (38.304) is smaller than desired (100)!
Chain 3: hat{ESS} (32.900) is smaller than desired (100)!
Chain 4: hat{ESS} (31.660) is smaller than desired (100)!

Large tail hat{xi}s suggest that the expectand might not be
sufficiently integrable.

Small empirical effective sample sizes indicate strong empirical
autocorrelations in the realized Markov chains. If the empirical
effective sample size is too small then Markov chain Monte Carlo
estimation may be unreliable even when a central limit theorem holds.

Notice that the expectand diagnostic failures manifest for only the parameters of the 18th tree
in the data set. This suggests that those parameters might be the most probematic. Indeed
the pairs plots of the Markov chain Monte Carlo output for these parameters show some wild
posterior geometries.

names <- c('d0[18]', 'delta_d[18]', 'beta[18]', 'delta_t_half[18]')
util$plot_div_pairs(names, names, samples, diagnostics)
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Why would this tree be so problematic? Well let’s contrast the data to some posterior samples
of the growth curve.

plot_realizations <- function(xs, fs, N=50,
x_name="", display_xlims=NA,
y_name="", display_ylims=NA,
title="") {

I <- dim(fs)[2]
J <- min(N, I)

plot_idx <- sapply(1:J, function(j) (I %/% J) * (j - 1) + 1)

nom_colors <- c("#DCBCBC", "#C79999", "#B97C7C",
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"#A25050", "#8F2727", "#7C0000")
line_colors <- colormap(colormap=nom_colors, nshades=J)

if (is.na(display_xlims)) {
xlims <- range(xs)

} else {
xlims <- display_xlims

}

if (is.na(display_ylims)) {
ylims <- range(fs)

} else {
ylims <- display_ylims

}

plot(1, type="n", main=title,
xlab=x_name, xlim=xlims,
ylab=y_name, ylim=ylims)

for (j in 1:J) {
r_fs <- fs[, plot_idx[j]]
lines(xs, r_fs, col=line_colors[j], lwd=3)

}
}

par(mfrow=c(1, 1), mar = c(5, 4, 2, 1))

t <- 18
idxs <- data$tree_start_idxs[t]:data$tree_end_idxs[t]
years <- data$tree_years[idxs]
dbhs <- data$tree_dbhs[idxs]

fs <- t(sapply(1:data$N_year_grid,
function(n) c(t(samples[[paste0('dbh_grid[',

t, ',', n, ']')]]),
recursive=TRUE)))

plot_realizations(data$year_grid, fs, 25,
x_name="Year", y_name="DBH (cm)",
title=paste0(tree_ids[t], ", t = ", t),)

points(years, dbhs, col="white", pch=16, cex=1.2)
points(years, dbhs, col="black", pch=16, cex=0.8)
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The measured diameters for this particular tree are consistent with no growth. An offset
Gomertz curve can accommodate this flat behavior in multiple ways; for example we can
shift the growth curve to the left so that the data fall into the upper asymptote or shift it
to the right so that the data fall into the lower asymptote, with 𝑑0 and 𝛿𝑑 compensating to
give the appropriate diameters. All of these different possibilities result in complex posterior
uncertainties that are computationally difficult for Stan to quantify.

Without more observations for this particular tree the only way to improve the posterior
behavior would be to incorporate more information into our prior model, for example more
carefully constraining the reasonable locations of the growth curves. For the moment let’s just
remove this tree entirely.
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active_tree_ids <- head(good_tree_ids, 17)

good_tree_ids <- c()
tree_N_obs <- c()
tree_start_idxs <- c()
tree_end_idxs <- c()
tree_years <- c()
tree_dbhs <- c()
tree_vigors <- c()
tree_species <- c()
tree_statuses <- c()
tree_notes <- c()

idx <- 1

for (id in active_tree_ids) {
# Isolate tree observations
tree_data <- stand_tree_data[stand_tree_data['TREEID'] == id,]

years <- tree_data[,'YEAR']
dbhs <- tree_data[,'DBH']
vigors <- tree_data[,'TREE_VIGOR']
species <- tree_data[,'SPECIES']
statuses <- tree_data[,'TREE_STATUS']
notes <- tree_data[,'CHECK_NOTES']

# Remove post-mortality observations
good_obs <- which(vigors != "M")
years <- years[good_obs]
dbhs <- dbhs[good_obs]
vigors <- vigors[good_obs]
species <- species[good_obs]
statuses <- statuses[good_obs]
notes <- notes[good_obs]

# Drop tree if there are not at least four observations
N_obs <- length(years)
if (N_obs < 4) next

# Append tree data to concatenated arrays
good_tree_ids <- c(good_tree_ids, id)
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tree_N_obs <- c(tree_N_obs, N_obs)

start_idx <- idx
end_idx <- idx + N_obs - 1
idx <- idx + N_obs
tree_start_idxs <- c(tree_start_idxs, start_idx)
tree_end_idxs <- c(tree_end_idxs, end_idx)

tree_years <- c(tree_years, years)
tree_dbhs <- c(tree_dbhs, dbhs)
tree_vigors <- c(tree_vigors, vigors)
tree_species <- c(tree_species, species)
tree_statuses <- c(tree_statuses, statuses)
tree_notes <- c(tree_notes, notes)

}

N <- length(tree_years)
N_trees <- length(good_tree_ids)

data <- mget(c("N", "N_trees", "tree_N_obs",
"tree_start_idxs", "tree_end_idxs",
"tree_years", "tree_dbhs"))

year_grid <- seq(1975, 2020, 1)
N_year_grid <- length(year_grid)

data$N_year_grid <- N_year_grid
data$year_grid <- year_grid

Will the fit be any better?

fit <- stan(file="stan_programs/heterogeneous_gompertz_growth.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

The diagnostics are still grumbling a bit.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

Chain 1: 5 of 1024 transitions (0.48828125%) saturated the maximum treedepth of 10.
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Chain 2: 2 of 1024 transitions (0.1953125%) saturated the maximum treedepth of 10.

Chain 3: 13 of 1024 transitions (1.26953125%) saturated the maximum treedepth of 10.

Chain 4: 1 of 1024 transitions (0.09765625%) saturated the maximum treedepth of 10.

Numerical trajectories that saturate the maximum treedepth have
terminated prematurely. Increasing max_depth above 10 should result in
more expensive, but more efficient, Hamiltonian transitions.

samples <- util$extract_expectands(fit)
base_samples <- util$filter_expectands(samples,

c('d0', 'delta_d', 'beta',
'delta_t_half', 'sigma'),

check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

d0[11]:
Chain 2: Left tail hat{xi} (0.251) exceeds 0.25!
Chain 2: hat{ESS} (62.145) is smaller than desired (100)!

delta_d[11]:
Chain 2: Right tail hat{xi} (0.256) exceeds 0.25!
Chain 2: hat{ESS} (58.650) is smaller than desired (100)!

beta[11]:
Chain 2: Right tail hat{xi} (0.329) exceeds 0.25!
Chain 2: hat{ESS} (79.760) is smaller than desired (100)!

delta_t_half[11]:
Chain 2: hat{ESS} (74.431) is smaller than desired (100)!

Large tail hat{xi}s suggest that the expectand might not be
sufficiently integrable.

Small empirical effective sample sizes indicate strong empirical
autocorrelations in the realized Markov chains. If the empirical
effective sample size is too small then Markov chain Monte Carlo
estimation may be unreliable even when a central limit theorem holds.
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The saturating tree depth and low emprical effective sample size warnings are consistent with
strong posterior uncertainties. Fortunately these warnings indicate inefficient posterior com-
putation but not inaccurate posterior computation. Similarly the ̂𝜉 warnings indicate that the
marginal posterior distribution for the 11th tree is heavy-tailed. Heavy-tailed posterior distri-
butions require Stan to work harder but don’t necessarily obstruct accurate computation.

The posterior realizations of the growth curve for the 11th tree don’t seem to exhibit any
particularly extreme behaviors.

par(mfrow=c(1, 1), mar = c(5, 4, 2, 1))

t <- 11
idxs <- data$tree_start_idxs[t]:data$tree_end_idxs[t]
years <- data$tree_years[idxs]
dbhs <- data$tree_dbhs[idxs]

fs <- t(sapply(1:data$N_year_grid,
function(n) c(t(samples[[paste0('dbh_grid[',

t, ',', n, ']')]]),
recursive=TRUE)))

plot_realizations(data$year_grid, fs, 25,
x_name="Year", y_name="DBH (cm)",
title=paste0(tree_ids[t], ", t = ", t),)

points(years, dbhs, col="white", pch=16, cex=1.2)
points(years, dbhs, col="black", pch=16, cex=0.8)
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We have to be careful, however, because heavy tails result in more extreme but also more rare
behaviors. This means that we often have to plot many realizations before we see the tail
behaviors, and here we’re plotting only 25 realizations.

Any ways, all of this discussion is to say that while our posterior distribution exhibits some
awkward behaviors Stan should be giving us a faithful picture of those behaviors and we can
continue on with our analysis.

The posterior retrodictive performance looks outright incredible compared to what have seen
with the first two models.

par(mfrow=c(3, 3), mar = c(5, 4, 2, 1))

for (t in 1:data$N_trees) {
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idxs <- data$tree_start_idxs[t]:data$tree_end_idxs[t]
years <- data$tree_years[idxs]
dbhs <- data$tree_dbhs[idxs]

pred_names <- sapply(1:data$N_year_grid,
function(n) paste0('dbh_grid_pred[',

t, ',', n, ']'))
preds <- samples[pred_names]
plot_cont_marginal_quantiles(data$year_grid, preds,

title=paste0(tree_ids[t], ", t = ", t),
x_name="Year", y_name="DBH (cm)")

points(years, dbhs, col="white", pch=16, cex=1.2)
points(years, dbhs, col="black", pch=16, cex=0.8)

}
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The offset Gompertz growth model is able to accommodate the late-stage saturation seen in
many of the trees and is partially able to accommodate the early-stage turn on seen in other
trees.

par(mfrow=c(2, 2), mar = c(5, 4, 2, 1))

for (t in c(1, 8, 9, 11)) {
idxs <- data$tree_start_idxs[t]:data$tree_end_idxs[t]
years <- data$tree_years[idxs]
dbhs <- data$tree_dbhs[idxs]

pred_names <- sapply(1:data$N_year_grid,
function(n) paste0('dbh_grid_pred[',
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t, ',', n, ']'))
preds <- samples[pred_names]
plot_cont_marginal_quantiles(data$year_grid, preds,

title=paste0(tree_ids[t], ", t = ", t),
x_name="Year", y_name="DBH (cm)")

points(years, dbhs, col="white", pch=16, cex=1.2)
points(years, dbhs, col="black", pch=16, cex=0.8)

}
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Posterior inferences for the measurement variability are now finally corralled below the 0.25
cm threshold encoded in our prior model.
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par(mfrow=c(1, 1), mar = c(5, 4, 2, 1))
util$plot_expectand_pushforward(samples[["sigma"]], 50,

display_name="sigma", flim=c(0, 0.75))
xs <- seq(0, 2, 0.01)
ys <- 2 * dnorm(xs, 0, 0.25 / 2.57)
lines(xs, ys, lwd=2, col=c_light)
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Confident in the adequacy of our model we can study the posterior inferences for each indi-
vidual tree. Any patterns in these inferences that correlate with tree health or environental
conditions would suggest additional features that we could incorporate into the model.

par(mfrow=c(4, 1), mar = c(5, 4, 2, 1))
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names <- sapply(1:data$N_trees,
function(t) paste0('d0[', t, ']'))

plot_disc_marginal_quantiles(samples, names, "d0")

names <- sapply(1:data$N_trees,
function(t) paste0('delta_d[', t, ']'))

plot_disc_marginal_quantiles(samples, names, "delta_d")

names <- sapply(1:data$N_trees,
function(t) paste0('beta[', t, ']'))

plot_disc_marginal_quantiles(samples, names, "beta")

names <- sapply(1:data$N_trees,
function(t) paste0('delta_t_half[', t, ']'))

plot_disc_marginal_quantiles(samples, names, "delta_t_half")
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4 Next Steps

By following the feedback from posterior retrodictive checks and leveraging our domain exper-
tise we have been able to iteratively increase the sophistication of our model, building up to a
reasonably accurate approximation of the true data generating process.

That said there are some lingerin issues with our last model and many possible extensions that
could bring us closer to answering some of our scientific questions. In other words there are
still many more steps that we could take to improve the analysis.

One immediate next step would be to follow up on the sampler diagnostics. We could for exam-
ple increase the maximum tree depth in Stan to allow for more expensive, but more effective,
Markov chain Monte Carlo computation. At the same time we could work on incorporating
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our domain expertise into a more informative prior model that might reduce the posterior
uncertainties, and hence the computational difficulty in exploring those uncertainties.

We could also investigate alternative sigmoidal growth models that might offer a better fit
to the data. For instance we might look at logistic models or models where the linear time
argument is replaced by a higher-order polynomial to see if the added flexibility allows for an
improved fit to the data. This can be especially important when we consider data from more
trees, both in our initial tree stand and in other tree stands.

Once we trust the adequacy of our model and the faithfulness of our posterior computation
we could then investigate any patterns in the tree behaviors, potentially correlating them with
auxiliary tree status observations to suggest growth models sensitive to tree physiology and
environmental factors such as tree species, tree health, and sunlight exposure. Any clustering
of tree growth behavior by these categories could be incorporated into a hierarchical model
that would model not only the individual trees but also the forest in which the trees belong.

Finally expanding our analysis with data from other tree stands at other locations around
Mount Rainier would allow us to start considering the influence of different climates on tree
growth. This is not only of general scientific interest but also might be useful for predicting
growth behavior under an evolving climate, if not helping to infer that evolution itself.

5 Workshop Presentation

This exercise was originally developed for a two-day, interactive workshop held at the Univer-
sity of British Columbia in January 2024. The goal of the workshop was not to teach the
audience of ecology undergraduate students, graduate students, and postdoctoral researchers
any particular technique but rather to expose them to the possibilities of (narratively) genera-
tive modeling and Bayesian inference, stimulating their curiosity and perhaps motivating them
to learn more in the future. In particular the audience was expected to be familiar with basic
ecology and use of the R language but not to have any prior experience with the statistical
analysis steps shown in Section 3.

The workshop itself was structured into three parts.

On the first half of the first day we introduced the provenance of the data discused in Section
1.1 before allowing the students to explore and visualize the data on their own. Throughout
we encouraged the students to consider their understanding of the data provenance, and the
conceptual data generating processes it suggested, to motivate the exploration. Students were
free to use the R data manipulation tools with which they were most comfortable.

For the second half of the first day the students brainstormed and researched potential mathe-
matical models for tree growth and diameter measurements. Interactively we also encouraged
students to also consider reasonable values for the parameters in the models they identified,
setting them up for principled prior modeling.
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Finally at the beginning of the second day we gave the students the code in Section 1.2 and
Section 1.3, in case they had any troubles in programming their own data exploration, and
then the code in Section 3.1 and Section 3.2 to serve as a basic template for implementing a
Bayesian analyses. We then directed the students to take the analysis in whichever direction
they wanted.

At the end of the second day we gathered back together. We began our conclusion with the
students sharing brief, improvised presentations of what they attempted and what they were
able to achieve in such a short time. The teaching staff also took this opportunity to discuss
the general challenges and opportunities that the student anaylyses demonstrated. Afterwards
we reviewed my analysis in Section 3.2 and Section 3.3.

The room in which the workshop was held was organized into small, round ables that implicitly
encouraged the students to work together in small groups. This facilitated the sharing of
ecological, statistical, and programming expertise amongst the students, which was particularly
productive given their diverse backgrounds.

Because of the interactive and open nature of the curriculum the workshop strongly benefited
from a large and dedicated teaching staff. Myself, Elizabeth Wolkovich, Will Pearse, Harold
Eyster, Andrew MacDonald, and Vianey Leos Barajas patrolled the room, answering individual
questions about ecological modeling, Bayesian inference, Markov chain Monte Carlo, R, Stan,
and more so that students were never left to struggle too long and become frustrated no matter
what their prior experience may have been.
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Original Computing Environment

writeLines(readLines(file.path(Sys.getenv("HOME"), ".R/Makevars")))

CC=clang

CXXFLAGS=-O3 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macro-redefined -Wno-unneeded-internal-declaration
CXX=clang++ -arch x86_64 -ftemplate-depth-256

CXX14FLAGS=-O3 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macro-redefined -Wno-unneeded-internal-declaration -Wno-unknown-pragmas
CXX14=clang++ -arch x86_64 -ftemplate-depth-256

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base
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other attached packages:
[1] colormap_0.1.4 rstan_2.32.3 StanHeaders_2.26.28

loaded via a namespace (and not attached):
[1] gtable_0.3.4 jsonlite_1.8.8 compiler_4.3.2 Rcpp_1.0.11
[5] stringr_1.5.1 parallel_4.3.2 gridExtra_2.3 scales_1.3.0
[9] yaml_2.3.8 fastmap_1.1.1 ggplot2_3.4.4 R6_2.5.1
[13] curl_5.2.0 knitr_1.45 tibble_3.2.1 munsell_0.5.0
[17] pillar_1.9.0 rlang_1.1.2 utf8_1.2.4 V8_4.4.1
[21] stringi_1.8.3 inline_0.3.19 xfun_0.41 RcppParallel_5.1.7
[25] cli_3.6.2 magrittr_2.0.3 digest_0.6.33 grid_4.3.2
[29] lifecycle_1.0.4 vctrs_0.6.5 evaluate_0.23 glue_1.6.2
[33] QuickJSR_1.0.8 codetools_0.2-19 stats4_4.3.2 pkgbuild_1.4.3
[37] fansi_1.0.6 colorspace_2.1-0 rmarkdown_2.25 matrixStats_1.2.0
[41] tools_4.3.2 loo_2.6.0 pkgconfig_2.0.3 htmltools_0.5.7
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Stan Program 1 homogeneous_linear_growth.stan

data {
int<lower=1> N;
int<lower=1> N_trees;
int<lower=1> tree_N_obs[N_trees];
int<lower=1, upper=N> tree_start_idxs[N_trees];
int<lower=1, upper=N> tree_end_idxs[N_trees];
vector[N] tree_years;
vector[N] tree_dbhs;

int<lower=1> N_year_grid;
vector[N_year_grid] year_grid;

}

parameters {
real<lower=0> d0[N_trees]; // Diameter at year of first observation (cm)
real beta; // Linear growth rate (cm / year)
real<lower=0> sigma; // Measurement variability (cm)

}

model {
d0 ~ normal(0, 150 / 2.57); // 99% prior mass between 0 and 150 cm
beta ~ normal(0, 2 / 2.32); // 99% prior mass between +/- 2 cm / year
sigma ~ normal(0, 0.25 / 2.57); // 99% prior mass between 0 and 0.25 cm

for (t in 1:N_trees) {
int start_idx = tree_start_idxs[t];

int end_idx = tree_end_idxs[t];
vector[tree_N_obs[t]] years = tree_years[start_idx:end_idx];
vector[tree_N_obs[t]] dbhs = tree_dbhs[start_idx:end_idx];

dbhs ~ normal(d0[t] + beta * (years - years[1]), sigma);
}

}

generated quantities {
real dbh_grid_pred[N_trees, N_year_grid];
for (t in 1:N_trees) {

real y0 = tree_years[tree_start_idxs[t]];
for (n in 1:N_year_grid) {
real mu = d0[t] + beta * (year_grid[n] - y0);
dbh_grid_pred[t, n] = normal_rng(mu, sigma);

}
}
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Stan Program 2 heterogeneous_linear_growth.stan

data {
int<lower=1> N;

int<lower=1> N_trees;
int<lower=1> tree_N_obs[N_trees];

int<lower=1, upper=N> tree_start_idxs[N_trees];
int<lower=1, upper=N> tree_end_idxs[N_trees];

vector[N] tree_years;
vector[N] tree_dbhs;

int<lower=1> N_year_grid;
vector[N_year_grid] year_grid;

}

parameters {
real<lower=0> d0[N_trees]; // Diameter at year of first observation (cm)

real beta[N_trees]; // Linear growth rate (cm / year)
real<lower=0> sigma; // Measurement variability (cm)

}

model {
d0 ~ normal(0, 150 / 2.57); // 99% prior mass between 0 and 150 cm

beta ~ normal(0, 2 / 2.32); // 99% prior mass between +/- 2 cm / year
sigma ~ normal(0, 0.25 / 2.57); // 99% prior mass between 0 and 0.25 cm

for (t in 1:N_trees) {
int start_idx = tree_start_idxs[t];

int end_idx = tree_end_idxs[t];
vector[tree_N_obs[t]] years = tree_years[start_idx:end_idx];

vector[tree_N_obs[t]] dbhs = tree_dbhs[start_idx:end_idx];

dbhs ~ normal(d0[t] + beta[t] * (years - years[1]), sigma);
}

}

generated quantities {
real dbh_grid_pred[N_trees, N_year_grid];

for (t in 1:N_trees) {
real y0 = tree_years[tree_start_idxs[t]];

for (n in 1:N_year_grid) {
real mu = d0[t] + beta[t] * (year_grid[n] - y0);

dbh_grid_pred[t, n] = normal_rng(mu, sigma);
}

}
}

62



Stan Program 3 homogeneous_linear_growth.stan

functions {
real gompertz(real t, real d_max, real beta, real delta_t_half) {return d_max * exp(-log2() * exp( - (2 / log2())

* (beta / d_max)
* (t - (2000 + delta_t_half))));

}
}

data {
int<lower=1> N;
int<lower=1> N_trees;
int<lower=1> tree_N_obs[N_trees];
int<lower=1, upper=N> tree_start_idxs[N_trees];
int<lower=1, upper=N> tree_end_idxs[N_trees];
vector[N] tree_years;
vector[N] tree_dbhs;

int<lower=1> N_year_grid;
vector[N_year_grid] year_grid;

}

parameters {
real<lower=0> d0[N_trees]; // Minimum DBH (cm)
real<lower=0> delta_d[N_trees]; // Difference between minimum and maximum DBH (cm)
real<lower=0> beta[N_trees]; // Intermediate linear growth rate (cm / year)
real delta_t_half[N_trees]; // Time to half maximum DBH (years relative to 2000)
real<lower=0> sigma; // Measurement variability (cm)

}

model {
d0 ~ normal(0, 150 / 2.57); // 99% prior mass between 0 and 50 cm
delta_d ~ normal(0, 30 / 2.57); // 99% prior mass between 0 and 30 cm
beta ~ normal(0, 2 / 2.57); // 99% prior mass between 0 and 2 cm / year
delta_t_half ~ normal(0, 50 / 2.32); // 99% prior mass between +/- 50 years
sigma ~ normal(0, 0.25 / 2.57); // 99% prior mass between 0 and 0.25 cm

for (t in 1:N_trees) {
int start_idx = tree_start_idxs[t];
int end_idx = tree_end_idxs[t];
vector[tree_N_obs[t]] years = tree_years[start_idx:end_idx];
vector[tree_N_obs[t]] dbhs = tree_dbhs[start_idx:end_idx];

for (n in 1:tree_N_obs[t]) {
real mu = gompertz(years[n], delta_d[t], beta[t], delta_t_half[t])

+ d0[t];
dbhs[n] ~ normal(mu, sigma);

}
}

}

generated quantities {
real dbh_grid[N_trees, N_year_grid];
real dbh_grid_pred[N_trees, N_year_grid];
for (t in 1:N_trees) {

for (n in 1:N_year_grid) {
dbh_grid[t, n] = gompertz(year_grid[n], delta_d[t],

beta[t], delta_t_half[t]) + d0[t];
dbh_grid_pred[t, n] = normal_rng(dbh_grid[t, n], sigma);

}
}

}
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