
Transforming Probability Spaces
Michael Betancourt

December 2023

Table of contents

1 Transforming 𝜎-Algebras 1

2 Transforming Measures 6
2.1 Pushforward Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Lossy Pushforward Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Lossless Pushforward Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Transforming Measure-Informed Integrals 14

4 Transforming Probability Density Functions 15
4.1 Directly Transforming Probability Density Functions . . . . . . . . . . . . . . . 15
4.2 Transforming Probability Mass Functions . . . . . . . . . . . . . . . . . . . . . 18
4.3 Transforming Lebesgue Probability Density Functions . . . . . . . . . . . . . . 21

4.3.1 The Jacobian Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Characterizing One-Dimensional Pushforward Probability Distributions 32

6 Conclusion 37

Acknowledgements 38

References 39

License 39

In Chapter 2 we learned how basic structures, such as metrics and topologies, are transformed
when we transform the underlying set. In this chapter we’ll learn how measure-theoretic struc-
tures are transformed, including probability distributions, expectation values, and probability
density functions.

1

https://betanalpha.github.io/assets/chapters_html/spaces.html


1 Transforming 𝜎-Algebras

We’ve already seen how to transform subsets Chapter 2. Given two spaces 𝑋 and 𝑌 and any
function 𝑓 ∶ 𝑋 → 𝑌 we can always push forward subsets in 𝑋 to subsets in 𝑌 by combining
the output of each point in the input subset (Figure 1a)

𝑓∗ ∶ 2𝑋 → 2𝑌

x ↦ 𝑓∗x = {𝑓(𝑥) ∣ 𝑥 ∈ x}.

Similarly we can pull back subsets in 𝑌 to subsets in 𝑋 by combining the preimages of every
output point (Figure 1b),

𝑓∗ ∶ 2𝑌 → 2𝑋

y ↦ 𝜙∗y = {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ∈ y}.

X Y

x

y = f∗(x)

f : X → Y

(a)

X Y

x = f∗(y)

y

f : X → Y

(b)

Figure 1: Transformations of a set induce transformations of subsets. (a) Subsets of the input
space x ⊂ 𝑋 can be pushed forward into subsets of the output space, 𝑓∗(x) ⊂ 𝑌 . (b)
Similarly subsets of the output space y ⊂ 𝑌 can be pullsed back into subsets of the
input space, 𝑓∗(y) ⊂ 𝑋.

2

https://betanalpha.github.io/assets/chapters_html/spaces.html


There is an asymmetry between these two induced transformations, however, when we consider
set operations. Both the pushforward and pullback set maps are compatible with the union
operation,

𝑓∗(∪𝑖x) = ∪𝑖𝑓∗(x)
𝑓∗(∪𝑖y) = ∪𝑖𝑓∗(y),

but only the pullback map is always compatible with the intersection operation,

𝑓∗(∩𝑖y) = ∩𝑖𝑓∗(y).

In general the intersection of any collection of input subsets pushes forward to a subset of the
intersection of the individual pushforward subsets (Figure 2).

𝑓∗(∪𝑖x) ⊆ ∪𝑖𝑓∗(x).

This has an immediate consequence for 𝜎-algebras: the pushforward of an intersection of
measurable input subsets isn’t necessarily a measurable output subset. Consequently a 𝜎-
algebra of measurable subsets on 𝑋 doesn’t always push forward into a 𝜎-algebra of measurable
subsets on 𝑌 .

On the other hand a 𝜎-algebra on 𝑌 does always pull back to a well-behaved 𝜎-algebra on 𝑋.
If 𝒴 is a 𝜎-algebra on 𝑌 then

𝑓∗𝒴 = {𝑓∗(y) ∣ y ∈ 𝒴}
is referred to as the pullback 𝜎-algebra along 𝑓 or the 𝜎-algebra generated by 𝑓 .

In order for a function 𝑓 ∶ 𝑋 → 𝑌 to preserve the structure of two measurable spaces (𝑋, 𝒳)
and (𝑌 , 𝒴), every measurable subset y ∈ 𝒴 needs to pull back to a measurable subset in 𝒳,

𝑓∗(y) ∈ 𝒳,

Equivalently 𝑓 preserves measurable structure only when

𝑓∗𝒴 ⊆ 𝒳.

Note that this does not require that every measurable subset x ∈ 𝒳 pushes forward to a
measurable subset in 𝒴; we can safely ignore measurable input subsets without compromising
the 𝜎-algebra on the output space.

Functions that preserve measurable structure are known as (𝒳, 𝒴)-measurable functions.
When the 𝜎-algebras on the input and output space are unambiguous this is often shortened
to just measurable functions. I will also use the more compact notation

𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴)

to denote (𝒳, 𝒴)-measurable functions.

3



X

x1 ⊂ X

f : X → Y Y

f∗(x1) ⊂ Y

X

x2 ⊂ X

f : X → Y Y

f∗(x2) ⊂ Y

(a)

X

x1 ∪ x2

f : X → Y Y

f∗(x1 ∪ x2)

= f∗(x1) ∪ f∗(x2)

(b)

X

x1 ∩ x2

f : X → Y Y

f∗(x1) ∩ f∗(x2)

f∗(x1 ∩ x2)

(c)

Figure 2: In general (a) subset pushforwards are not consistent with all of the binary set
operations. (b) The union of the pushforwards of two input subsets is always the
same as the pushforward of the union of the input subsets. (c) On the other hand
the intersection of the pushforwards of two input subsets is in generally only a subset
of the pushforward of the intersection of the two input subsets. In other words the
pushforward operation commutes with the union operator, so that we can apply
them in either order and achieve the same result, but the pushforward operation
does not commute with the intersection operator. The pullback operation, however,
commutes with both the union and intersection operators.

4



We’ve already encountered measurable functions in Chapter 5 when introducing measure-
informed integration. A real-valued function 𝑓 ∶ 𝑋 → ℝ can be integrated on the measure
space (𝑋, 𝒳, 𝜇) if every half-open interval on the output space pulls back to a measurable
subset on the input space,

𝑓∗( (−∞, 𝑥) ) ∈ 𝒳.
This condition, however, is equivalent to every subset in the Borel 𝜎-algebra of the real line,
y ∈ ℬℝ, pulling back to a measurable subset on the input space,

𝑓∗(y) ∈ 𝒳.

In other words what we referred to as “𝒳-measurable real-valued functions” in Chapter 5 are
more formally (𝒳, ℬℝ)-measurable functions. The former notation takes the Borel 𝜎-algebra on
the real line for granted, while the latter makes it more explicit. This is a common shorthand
– references to “measurable functions” without any specification almost always imply Borel
𝜎-algebras on the input and output spaces.

Fortunately this shorthand isn’t too problematic in practice because we will almost always be
working with measures defined over Borel 𝜎-algebras derived from the topological structure of
the relevant spaces. Consequently a function 𝑓 ∶ 𝑋 → 𝑌 mapping the Borel measurable space
(𝑋, ℬ𝑋) into the Borel measurable space (𝑌 , ℬ𝑌 ) might be described as (ℬ𝑋, ℬ𝑌 )-measurable,
Borel measurable, or even just “measurable”.

Continuous functions that respect the topological structure of the input and outputs spaces
are always Borel measurable, but so too are functions that are only piece-wise continuous.
Ultimately Borel measurability is a much weaker condition than topological continuity because
we can map open subsets in the output space into not only open subsets in the output space,
but also closed subsets in the output space and even any subset that we can derive from unions
and intersections of open and closed subsets in the input space.

When working with finite-dimensional spaces in practice it is safe to assume that not only all
but the most pathological subsets are measurable but also that all but the most pathological
functions are measurable. Infinite-dimensional spaces are another matter, but that those spaces
will largely be outside of the scope of this book.

2 Transforming Measures

Conveniently the pullback of measurable subsets allows us to pushforward measures from the
input space to a compatible measure on the output space. Given a (𝒳, 𝒴)-measurable function
𝑓 ∶ 𝑋 → 𝑌 any measure 𝜇 ∶ 𝒳 → [0, ∞] defines a pushforward measure by the allocations

𝑓∗𝜇 ∶ 𝒴 → ℝ+

y ↦ 𝑓∗𝜇(y) = 𝜇(𝑓∗(y)).

5

https://betanalpha.github.io/assets/chapters_html/expectation_values.html
https://betanalpha.github.io/assets/chapters_html/expectation_values.html


f(x)

x

Figure 3: Most of the functions that we encounter in practice are measurable with respect
to the standard 𝜎-algebras. For example functions 𝑓 ∶ ℝ → ℝ that are smooth,
non-differentiable but continuous, and even discontinuous at a countable number of
points are all (ℬℝ, ℬℝ)-measurable.

In words the pushforward measure allocated to any measurable subset on the output space
y ∈ 𝒴 is computed by pulling the subset back to the input space 𝑓∗(y) ∈ 𝒳 and then evaluating
the initial measure, 𝜇(𝑓∗(y)) (Figure 4).

The exact interpretation of a pushforward measure will depend on the interpretation of the
input measure and the transformation. Consider, for example, a probability distribution 𝜋
defined on the input space that we interpret as quantifying uncertainty. This probability
distribution captures our uncertainty about the inputs to a function 𝑓 while the pushforward
probability distribution 𝑓∗𝜋 quantifies the corresponding uncertainty in the output of the func-
tion. In other words the pushforward transformation propagates the initial uncertainty through
the deterministic mapping.

At the same time certain functions can endow the corresponding pushforward measures with
particular interpretations.

2.1 Pushforward Terminology

Pushforward measures are ubiquitous in applied probability theory, although they are often
better known by other names.

For example consider a finite input space 𝑋,

𝑋 = {■, ♣, ○, ♢, △, ⋈},

6



X Y

µ(f∗(y))

f∗µ(y)

f : X → Y

Figure 4: Because measurable output subsets pullback to measurable input subsets along mea-
surable functions we can push forward measure allocations. In particular the pushfor-
ward measure allocated to the measurable output subset y ∈ 𝒴 is given by pulling it
back to the input space, 𝑓∗(y) ∈ 𝒳, and then querying the initial measure, 𝜇(𝑓∗(y)).

a finite output space 𝑌 ,
𝑌 = {♡, ♠, �},

and a function 𝑓 ∶ 𝑋 → 𝑌 defined by the relations (Figure 5a)

𝑓(■) = ♠
𝑓(♣) = ♡
𝑓(○) = �
𝑓(♢) = ♠
𝑓(△) = ♡
𝑓(⋈) = ♠

These relationships between input and output points become particularly well-organized when
we arrange the input elements into a table, with each row collecting all of the input elements
that map to a particular output element (Figure 5b). Conveniently the pushforward measure
allocated to each output atomic subset is then given by summing the input atomic subset allo-
cations in each the corresponding row (Figure 5c, Figure 5c). In other words the pushforward
allocations fit nicely into the margins of the table.

Historically these kinds of graphical organizations motivated the term marginal measure
to describe pushforward measures, or marginal probability distribution in the case of an
input probability distribution. Today this terminology is common even when the input and
output spaces are not finite, and the tabular representation of functions isn’t quite as useful
(Figure 6).

Another popular naming convention arises when the output space is a subset of the input
space, 𝑌 ⊂ 𝑋. In this case a function 𝑓 ∶ 𝑋 → 𝑌 projects the input space onto the output

7



�♣

♦©

4

./

X

♥

♠

F

Yf : X → Y

(a)

�

♣

♦

©

4

./

f−1({♥}) ⊂ X

f−1({♠}) ⊂ X

f−1({F}) ⊂ X

♥

♠

F

Yf : X → Y

(b)

�

♣

♦

©

4

./

f−1({♥}) ⊂ X

f−1({♠}) ⊂ X

f−1({F}) ⊂ X

�

♣
♦

©

4

./

♥

♠

F

Yf : X → Y

(c)

�

♣

♦

©

4

./

f−1({♥}) ⊂ X

f−1({♠}) ⊂ X

f−1({F}) ⊂ X

�

♣
♦

©

4

./

Y

♥

♠

F

♥
♠

F

f∗µ({♥}) = µ(f−1({♥}))

f∗µ({♠}) = µ(f−1({♠}))

f∗µ({F}) = µ(f−1({F}))

f : X → Y

(d)

Figure 5: On finite spaces (a) functions 𝑓 ∶ 𝑋 → 𝑌 (b) are naturally organized into tables,
with each row collecting all of the input points that map to each output point. (c)
Given an input measure 𝜇 (d) we can compute the pushforward measure allocations
by summing the 𝜇 allocations in each row and then displaying the results in the
margins of the table.

8



f−1(y) ⊂ X

X Y

y ∈ Y

(a)

f∗(y) ⊂ X

X Y

y ⊂ Y

(b)

µ(f∗(y))

X Y

f∗µ(y)

(c)

Figure 6: When working on general spaces the tabular organization of a function 𝑓 ∶ 𝑋 → 𝑌
generalizes to (a) collections of level sets 𝑓−1(𝑦) ⊂ 𝑋, one for each output point
𝑦 ∈ 𝑌 . (b) The pullback of any output subset is the union of these level sets and
(c) the pushforward measure allocated to any output subset is effectively the sum of
the measures allocated to the relevant level sets. These pushforward allocations can
then be informally collected into the “margins”.

f−1(y) ⊂ X

X

Y

y ∈ Y

(a)

f−1(y) ⊂ X

X

Y

y ⊂ Y

(b)

µ(f−1(y))

X

Y

X

Y

X

Y

f∗µ(y)

(c)

Figure 7: When a function 𝑓 ∶ 𝑋 → 𝑌 maps an input space into a subset of itself, 𝑌 ⊂ 𝑋, then
pushforward measures can be interpreted as projections of the initial measure. (a)
In this case each level set 𝑓−1(𝑦) is anchored to a point 𝑦 ∈ 𝑋 and (b) the pullback
of an output subset is anchored to the points in that subset. (c) The pushforward
measure collapsed the measure allocated to each level set down to the corresopnding
anchor point.

9



subset (Figure 7). Pushing forward measures along this projection collapses the total measure
allocated to the input space into the smaller output space.

Consider for example the unit interval interpreted as a subset of a real line,

(0, 1) ⊂ 𝑅.

One way to squeeze the entire real line into (0, 1) is to apply the logistic function,

logistic ∶ ℝ → (0, 1)

𝑥 ↦ 1
1 + exp(−𝑥).

The logistic function preserves topological structure, pushing open intervals in ℝ forward into
open intervals in (0, 1),

logistic∗( (𝑥1, 𝑥2) ) = ( logistic(𝑥1), logistic(𝑥2) ).

At the same time open intervals in (0, 1) are pulled back into open intervals in ℝ,

logistic∗( (𝑦1, 𝑦2) ) = ( logistic−1(𝑦1), logistic−1(𝑦2) ).

Consequently the logistic function is Borel measurable.

When pushing forward measures along the logistic function the measure allocated to any open
interval is squeezed into a narrower interval,

𝜇∗( (𝑦1, 𝑦2) ) = 𝜇( logistic∗( (𝑦1, 𝑦2) ) )
= 𝜇( ( logistic−1(𝑦1), logistic−1(𝑦2) ) ).

2.2 Lossy Pushforward Measures

We can always push measures forward along measurable functions, but in general we cannot
pull them back. This asymmetry arises because the pushforward operation can lose informa-
tion.

Consider the function between finite spaces that we introduced in Section 2.1. A measure 𝜇
on the input space defines the pushforward atomic allocation

𝑓∗𝜇({♡}) = 𝜇(𝑓∗(♡))
= 𝜇({♣, △})
= 𝜇({♣}) + 𝜇({△}).

Because input elements ♣ and △ map to the same output element their atomic allocations
are combined into a single pushforward atomic allocation.

10

@sec:terminology


x1 = logit(y1)

y1

x2 = logit(y2)

y2
(0, 1)

R

π( (logit(y1), logit(y2)) )

f∗π( (y1, y2) )

Figure 8: The logistic function squeeze an entire real line into the unit interval. When we
push an input measure forward along the logistic function the measure allocated to
an input intervals is squeezed into a narrow interval.

If we are given only the pushforward allocation 𝑓∗𝜇({♡}) then we will not have enough in-
formation to fully recover the initial allocations 𝜇({△}) and 𝜇({△}). We can constrain their
sum,

𝑓∗𝜇({♡}) = 𝜇({♣}) + 𝜇({△}),
but there are infinitely many input measures consistent with such a constraint.

For a more sophisticated example let’s investigate a function that maps a real line into integers
by rounding each real number to the next largest integer,

𝑓 ∶ ℝ → ℤ
𝑥 ↦ ⌈𝑥⌉.

This function collapses every point in the half-open interval (𝑛 − 1, 𝑛] to the integer 𝑛 so that
the atomic subsets on the output space pull back to those input intervals (Figure 9),

𝑓∗({𝑛}) = (𝑛 − 1, 𝑛].

Along 𝑓 the Lebesgue measure on the real line pushes forward to a measure on the integers
with the atomic allocations

𝑓∗𝜆({𝑛}) = 𝜆(𝑓∗({𝑛}))
= 𝜆( (𝑛, 𝑛 − 1] )
= 𝑛 − (𝑛 − 1)
= 1.

In other words the pushforward of the Lebesgue measure along this rounding map is just the
counting measure!

11



−6

−6

−5

−5

−4

−4

−3

−3

−2

−2

−1

−1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

I

R

· · ·· · ·

π( (0, 1] )

f∗π({1})

Figure 9: Rounding real numbers to the next-largest integer defines a map from a real line to
the integers. Input measure allocated to the half-open intervals (𝑛 − 1, 𝑛] projects
down to the corresponding integer 𝑛.

The counting measure on the output space, however, does not provide any information about
how to distribute the atomic allocation 𝜒({𝑛}) = 1 across the entire pullback subset (𝑛 − 1, 𝑛].
Instead there are an infinite numbers of ways that the measure 𝜒({𝑛}) = 1 could be consistently
reallocated across (𝑛 − 1, 𝑛] and we have no criteria for preferring one over another.

2.3 Lossless Pushforward Measures

Because most pushforward measures lose information about the initial allocations the excep-
tional measures that preserve information are particulary notable.

As we saw in Section 1 pushforward sets do not generally respect the intersection set operator,
preventing us from pushing forward 𝜎-algebras from the input space to the output space.
Pushing sets forward along injective functions, however, does respect the intersection operator.
Consequently we can always push forward 𝜎-algebras along injective functions.

When working with measurable spaces that are already equipped with 𝜎-algebras, (𝑋, 𝒳) and
(𝑌 , 𝒴) any injective function 𝑓 ∶ 𝑋 → 𝑌 that both pulls back measurable output subsets to
measurable input subsets,

𝑓∗(y) ⊂ 𝒳,
and pushes forward measurable input subsets to measurable output subsets,

𝑓∗(x) ⊂ 𝒴.
is said to be (𝒳, 𝒴)-bimeasurable, or simply bimeasurable when the 𝜎-algebras are unam-
biguous.

Because the pushforward and pullback maps along injective functions always satisfy

𝑓∗ ∘ 𝑓∗ = 𝐼

12

@sec:pushforward-sets


we also have
𝑓∗(𝒴) = 𝒳.

In other words the 𝜎-algebra generated by a bimeasurable function is just the input
𝜎-algebra.

As with measurable functions, bimeasurable functions allow us to push forward any measure on
the input space 𝜇 ∶ 𝒳 → [0, ∞] to a corresponding measure on the output space 𝜇∗ ∶ 𝒴 → [0, ∞]
with the allocations

𝜇∗(y) = 𝜇( 𝑓∗(y) ).
Bimeasurable functions also allow us to pull back any measure 𝜈 ∶ 𝒴 → [0, ∞] on the output
space to a corresponding measure 𝜈∗ ∶ 𝒳 → [0, ∞] on the input space with the allocations

𝜈∗(x) = 𝜈( 𝑓∗(x) ).

When a function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴) is not only bimeasurable by also bijective then these
operations are consistent with each other. Pulling back a pushforward measure always recovers
the input allocations,

𝑓∗𝜇∗(x) = 𝜇∗( 𝑓∗(x) )
= 𝜇( 𝑓∗ ∘ 𝑓∗(x) )
= 𝜇(x),

and pushing forward a pullback measure always recovers the output allocations,

𝑓∗𝜈∗(y) = 𝜈∗( 𝑓∗(y) )
= 𝜈( 𝑓∗ ∘ 𝑓∗(y) )
= 𝜈(y).

In other words we can completely reconstruct any input measure from its pushforward alloca-
tions and any output measure from its pullback allocations. Bimeasurable functions do not
lose information!

Two measure spaces (𝑋, 𝒳, 𝜇) and (𝑌 , 𝒴, 𝜈) that are related by a bimeasurable function 𝑓 ∶
𝑋 → 𝑌 provide equivalent measure-theoretic information,

𝑓∗𝜇 = 𝜈
𝑓∗𝜈 = 𝜇.

Because they quantify the same information they can be interpreted as different mathematical
representations of a common, abstract measure system.

For example because every permutation of a countable set preserves the discrete 𝜎-algebra
every permutation of a countable set is a bimeasurable bijection, transforming any discrete
measure into another, equivalent discrete measure. In practice this means that we are free

13



to choose the permutation that yields the most convenient organization of the underlying set
without having to worry about compromising the information encoded in the original space!

Similarly every continuous bijection between two real lines is bimeasurable with respect to
the Borel 𝜎-algebras. Continuous bijections then allow us to transform a measure over a rigid
real line into a measure on another rigid real line without losing information. Equivalently
these maps allow us to transform a measure over any parameterization of a flexible real line
into a measure over any other parameterization of that space without losing any resolution
of the system. This gives us the freedom to choose the units or coordinate system that are
most convenient in a given application without having to worry about affecting the measure
structure.

3 Transforming Measure-Informed Integrals

Once we know how to transform subset allocations we can, at least in theory, define integrals
with respect to a pushforward measure on the output space and relate them to integrals with
respect to the initial measure on the input space. Fortunately that relationship ends up being
relatively straightforward.

Given a function 𝜙 ∶ 𝑋 → 𝑌 any real-valued function on the output space 𝑓 ∶ 𝑌 → ℝ pulls
back to a real-valued function on the input space 𝜙∗𝑓 ∶ 𝑋 → ℝ by composition,

𝜙∗𝑓(𝑥) = 𝑓 ∘ 𝜙(𝑥) = 𝑓(𝜙(𝑥)).

Additionally if 𝜙 ∶ 𝑋 → 𝑌 is a (𝒳, 𝒴)-measurable function and 𝑓 ∶ 𝑌 → ℝ is a (𝒴, 𝔹ℝ)-
measurable function then 𝜙∗𝑓 = 𝑓 ∘ 𝜙 will always be a (𝒳, 𝔹ℝ)-measurable function. In other
words integrands on the output space always pullback to integrands on the input space along
measurable transformations.

When the input space is endowed with a measure 𝜇, and the output space is endowed with the
pushforward measure 𝜙∗𝜇, we can use these two integrands to define two measure-informed
integrals: one on the input space,

𝕀𝜇[𝜙∗𝑓],
and one on the output space,

𝕀𝜙∗𝜇[𝑓].
Conveniently these measure-informed integrals are always equal,

𝕀𝜇[𝜙∗𝑓] = 𝕀𝜙∗𝜇[𝑓].

When we’re working with probability distributions this becomes a relationship between equiv-
alent expectation values,

𝔼𝜋[𝜙∗𝑓] = 𝔼𝜙∗𝜋[𝑓].

14



This equality means that we never have to explicitly construct a pushforward measure in
practice. We can compute any integral with respect to 𝜙∗𝜇 by pulling back the output integrand
to the input space,

𝜙∗𝑓 = 𝑓 ∘ 𝜙,
and integrating with respect to 𝜇. So long as we know how to compute 𝜇-informed integrals
we can compute 𝜙∗𝜇-informed integrals.

While we’re on the topic of measure-informed integration, notice that we have two ways for
a measure space (𝑋, 𝒳, 𝜇) to consume a function 𝑓 ∶ (𝑋, 𝒳) → (ℝ, ℬℝ). So long as 𝑓 is 𝜇-
integrable we can integrate 𝑓 with respect to 𝜇 to give the single real number 𝕀𝜇[𝑓] ∈ ℝ. On
the other hand we can also push 𝜇 forward along 𝑓 to construct an entire measure 𝑓∗𝜇 over
the possible output values!

The mean of the pushforward measure 𝑓∗𝜇 is given by

𝕄𝑓∗𝜇 = 𝕀𝑓∗𝜇[𝜄]
= 𝕀𝜇[𝜄 ∘ 𝑓]
= 𝕀𝜇[𝑓].

In other words the 𝜇-informed integral of 𝑓 is always equal to the mean of the corresponding
pushforward measure!

Because of this concurrence the 𝜇-informed integral of a function is sometimes referred to as
“the mean of 𝑓”. Similarly the 𝜇-informed integral of

𝕀𝑓∗𝜇[(𝜄 − 𝕄𝑓∗𝜇)2] = 𝕀𝜇[(𝜄 ∘ 𝑓 − 𝕄𝑓∗𝜇)2]
= 𝕀𝜇[(𝑓 − 𝕄𝑓∗𝜇)2]

is sometimes referred to as “the variance of 𝑓”.

Personally I try to avoid this terminologies because I find that they facilitate confusion between
the two operations. I do not, however, shy away from using certain 𝜇-informed integrals to
quantify the properties of a pushforward measure 𝑓∗𝜇. Indeed this is an incredibly powerful
tool in practice and one that we discuss more thoroughly in Section 5.

4 Transforming Probability Density Functions

In practice we rarely, if ever, define probability distributions with subset allocations but rather
rely on probability density functions with respect to convenient reference measures. To trans-
form probability distributions in this applied context we will need to know how to push forward
probability density functions along measurable transformations.

15

@sec:1d-pushforward-characterizations


4.1 Directly Transforming Probability Density Functions

When an initial probability distribution 𝜋 and reference measure 𝜈 are fixed the transformation
properties of the corresponding probability density function is straightforward to construct for
bijective functions.

On the input space we can define the probability density function
d𝜋
d𝜈 ∶ 𝑋 → ℝ+.

At the same time given a function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴) we can push forward both 𝜋 and 𝜈 to
measures on the output space and construct the probability density function between them,

d𝑓∗𝜋
d𝑓∗𝜈

∶ 𝑌 → ℝ+.

Because we’re using a consistent reference measure these two functions are related by compo-
sition,

d𝜋
d𝜈 (𝑥) 𝜈= d𝑓∗𝜋

d𝑓∗𝜈
∘ 𝑓(𝑥).

In other words the output probability density function d𝑓∗𝜋/d𝑓∗𝜈 pulls back to the input
probability density function d𝜋/d𝜈.

When 𝑓 is a bijection we can use its inverse to construct an output probability density function
from an input probability density function,

d𝑓∗𝜋
d𝑓∗𝜈

(𝑦) 𝑓∗𝜈= d𝜋
d𝜈 ∘ 𝑓−1(𝑦).

In a practice, however, the pushforward of the initial reference measure 𝑓∗𝜈 might not actually
be the most convenient reference measure on the output space. For example a uniform measure
over the input space will not generally push forward to a uniform measure over the output
space. If we want to construct probability density functions on the output space relative to
a different reference measure 𝜆 then the relevant probability density function we need is no
longer

d𝑓∗𝜋
d𝑓∗𝜈

∶ 𝑌 → ℝ+.

but rather
d𝑓∗𝜋
d𝜆 ∶ 𝑌 → ℝ+.

Fortunately we can still relate this output probability density function to the initial probability
density function with the Radon-Nikodym chain rule. If 𝑓∗𝜈 is absolutely continuous with
respect to 𝜆 then we can expand the desired output probability density function into

d𝑓∗𝜋
d𝜆 (𝑦) 𝜆= d𝑓∗𝜋

d𝑓∗𝜈
(𝑦) ⋅ d𝑓∗𝜋

d𝜆 (𝑦).

16



When 𝑓 is measurable and bijective then we can derive the first contribution from the initial
probability density function and the function inverse,

d𝑓∗𝜋
d𝜆 (𝑦) 𝜆= d𝜋

d𝜈 ∘ 𝑓−1(𝑦) ⋅ d𝑓∗𝜈
d𝜆 (𝑦).

The second term in this transformation formula,

d𝑓∗𝜈
d𝜆 (𝑦),

quantifies how warped the pushforward reference measure 𝑓∗𝜈 is relative to the desired reference
measure 𝜆. When

d𝑓∗𝜈
d𝜆 (𝑦) 𝜆= 1

the two reference measures are equivalent and the transformation rule reduces to our initial
calculation.

Unfortunately this warping contribution is often difficult to compute, limiting how often we
can applying the transformation formula directly. To compute it in practice we usually need
to consider the transformation properties of measure-informed integrals,

𝕀𝜈[𝑔 ∘ 𝑓] = 𝕀𝑓∗𝜈[𝑔]

𝕀𝜈[𝑔 ∘ 𝑓] = 𝕀𝜆 [d𝑓∗𝜈
d𝜆 ⋅ 𝑔] .

If we can relate 𝜈-informed integration on the input space to 𝜆-informed integration out the
output space then this relationship may allow us to compute the warping factor d𝑓∗𝜈/d𝜆.

Constructing pushforward probability density functions along non-bijective functions is much
more complicated. Ultimately we need to relate 𝜋-informed integration on the input space to
𝜆-informed integration on the output space,

𝔼𝜋[𝑔 ∘ 𝑓] = 𝕀𝑓∗𝜋[𝑔]

𝕀𝜈 [d𝜋
d𝜈 ⋅ 𝑔 ∘ 𝑓] = 𝕀𝜆 [d𝑓∗𝜋

d𝜆 ⋅ 𝑔]

∫
𝑋

𝜈(d𝑥) d𝜋
d𝜈 (𝑥) ⋅ 𝑔(𝑓(𝑥)) = ∫

𝑌
𝜆(d𝑦) d𝑓∗𝜋

d𝜆 (𝑦) ⋅ 𝑔(𝑦).

If 𝑓 ∶ 𝑋 → 𝑌 is surjective then, at least conceptually, we might be able to implement the
𝜈-informed integral over the input space iteratively, first integrating over the the individual
level sets of 𝑓 before aggregating those intermediate results,

∫
𝑋

𝜈(d𝑥) d𝜋
d𝜈 (𝑥) ⋅ 𝑔(𝑓(𝑥)) = ∫

𝑌
𝜆(d𝑦) [∫

𝑓−1(𝑦)
𝜅𝑦(d𝑧)d𝜋

d𝜈 (𝑥(𝑦, 𝑧))] ⋅ 𝑔(𝑦).

17



In this case we would have

∫
𝑌

𝜆(d𝑦) [∫
𝑓−1(𝑦)

𝜅𝑦(d𝑧)d𝜋
d𝜈 (𝑥(𝑦, 𝑧))] ⋅ 𝑔(𝑦) = ∫

𝑌
𝜆(d𝑦) d𝑓∗𝜋

d𝜆 (𝑦) ⋅ 𝑔(𝑦)

or
d𝑓∗𝜋
d𝜆 (𝑦) = ∫

𝑓−1(𝑦)
𝜅𝑦(d𝑧)d𝜋

d𝜈 (𝑥(𝑦, 𝑧)).

To be clear this is entirely a casual argument. Formalizing it, in particular defining exactly
what the measures across the level sets 𝜅𝑦(d𝑧) need to be to ensure consistent results is a
subtle mathematical problem. Conveniently we’ll tackle this exact problem when we introduce
conditional probability theory in the next chapter.

4.2 Transforming Probability Mass Functions

When 𝑋 and 𝑌 are both discrete measurable spaces then probability density functions with
respect to the respective counting measures reduce to probability mass functions. In this case
we can conveniently compute the transformation properties directly by applying the transfor-
mation rule for measure-informed integrals to counting measures and indicator functions,

𝕀𝜒𝑋
[𝐼{𝑦′} ∘ 𝑓] = 𝕀𝑓∗𝜒𝑋

[𝐼{𝑦′}].

On the left-hand side we can take advantage of the fact that integration with respect to a
counting measure reduces to discrete summation,

𝕀𝜒𝑋
[𝐼{𝑦′} ∘ 𝑓] = 𝕀𝜒𝑋

[𝐼{𝑦′} ∘ 𝑓]
= ∑

𝑥∈𝑋
𝐼{𝑦′}(𝑓(𝑥)).

When 𝑓 ∶ 𝑋 → 𝑌 is bijective then there will be one, and only one, input point 𝑥 ∈ 𝑋 with
𝑓(𝑥) = 𝑦′ and

𝕀𝜒𝑋
[𝐼{𝑦′} ∘ 𝑓] = ∑

𝑥∈𝑋
𝐼{𝑦′}(𝑓(𝑥)) = 1.

Moving over to the right-hand side we have to convert to the output counting measure before
summing,

𝕀𝑓∗𝜒𝑋
[𝐼{𝑦′}] = 𝕀𝜒𝑌

[d𝑓∗𝜒𝑋
d𝜒𝑌

⋅ 𝐼{𝑦′}]

= ∑
𝑦∈𝑌

d𝑓∗𝜒𝑋
d𝜒𝑌

(𝑦) ⋅ 𝐼{𝑦′}(𝑦)

= d𝑓∗𝜒𝑋
d𝜒𝑌

(𝑦′).

18



Putting the two results together gives

𝕀𝜒𝑋
[𝐼{𝑦′} ∘ 𝑓] = 𝕀𝑓∗𝜒𝑋

[𝐼{𝑦′}]

1 = d𝑓∗𝜒𝑋
d𝜒𝑌

(𝑦′)

for any 𝑦′ ∈ 𝑌 . In other words counting measures on discrete spaces always map to other
counting measures under bijections; no two counting measures will ever appear warped relative
to each other so long as the input and output spaces have the same number of elements.

Substituting this into the transformation rule for probability density functions under bijections
gives an explicit transformation rule for probability mass functions 𝑝 ∶ 𝑋 → [0, 1],

𝑓∗𝑝(𝑦) = d𝑓∗𝜋
d𝜒𝑌

(𝑦)

= d𝜋
d𝜒𝑋

∘ 𝑓−1(𝑦) ⋅ d𝑓∗𝜒𝑋
d𝜒𝑌

(𝑦)

= d𝜋
d𝜒𝑋

∘ 𝑓−1(𝑦) ⋅ 1

= d𝜋
d𝜒𝑋

∘ 𝑓−1(𝑦)

= 𝑝 ∘ 𝑓−1(𝑦).

More generally for any expectand 𝑔 ∶ 𝑌 → ℝ we should have

𝔼𝜋[𝑔 ∘ 𝜙] = 𝔼𝑓∗𝜋[𝑔]

𝕀𝜒𝑋
[ d𝜋

d𝜒𝑋
⋅ 𝑔 ∘ 𝑓] = 𝕀𝜒𝑌

[d𝑓∗𝜋
d𝜒𝑌

⋅ 𝑔]

𝕀𝜒𝑋
[𝑝 ⋅ 𝑔 ∘ 𝑓] = 𝕀𝜒𝑌

[𝑓∗𝑝 ⋅ 𝑔]
∑
𝑥∈𝑋

𝑝(𝑥) ⋅ 𝑔(𝑓(𝑥)) = ∑
𝑦∈𝑌

𝑓∗𝑝(𝑦) ⋅ 𝑔(𝑦).

Because the input space is discrete we can readily organize the summation on the left-hand
side any way we want. In particular we can always add up the contributions from the elements
in each level set 𝑓−1(𝑦) first and then combine all of those contributions,

∑
𝑥∈𝑋

= ∑
𝑦∈𝑌

∑
𝑥∈𝑓−1(𝑦)

.

19



Using this organization gives

∑
𝑥∈𝑋

𝑝(𝑥) ⋅ 𝑔(𝑓(𝑥)) = ∑
𝑦∈𝑌

𝑓∗𝑝(𝑦) ⋅ 𝑔(𝑦)

∑
𝑦∈𝑌

∑
𝑥∈𝑓−1(𝑦)

𝑝(𝑥) ⋅ 𝑔(𝑓(𝑥)) = ∑
𝑦∈𝑌

𝑓∗𝑝(𝑦) ⋅ 𝑔(𝑦)

∑
𝑦∈𝑌

∑
𝑥∈𝑓−1(𝑦)

𝑝(𝑥) ⋅ 𝑔(𝑦) = ∑
𝑦∈𝑌

𝑓∗𝑝(𝑦) ⋅ 𝑔(𝑦)

∑
𝑦∈𝑌

⎡⎢
⎣

∑
𝑥∈𝑓−1(𝑦)

𝑝(𝑥)⎤⎥
⎦

⋅ 𝑔(𝑦) = ∑
𝑦∈𝑌

𝑓∗𝑝(𝑦) ⋅ 𝑔(𝑦).

This is true for any expectand 𝑔 if and only if

𝑓∗𝑝(𝑦) = ∑
𝑥∈𝑓−1(𝑦)

𝑝(𝑥).

When 𝑓 ∶ 𝑋 → 𝑌 is a bijection each level set contains a single input element,

𝑓∗𝑝(𝑦) = ∑
𝑥∈𝑓−1(𝑦)

𝑝(𝑥)

= 𝑝(𝑓−1(𝑦))
= 𝑝 ∘ 𝑓−1(𝑦),

consistent with what we derived above.

To put this all into context let’s consider a product space built up from 𝑁 binary component
spaces,

𝑋 = {0, 1}𝑁 ,
and a probability distribution specified by the probability mass function

𝑝(𝑥) = 𝑝(𝑥1, … , 𝑥𝑁)

=
𝑁

∏
𝑛=1

𝑝(𝑥𝑛)

=
𝑁

∏
𝑛=1

𝜃𝑥𝑛(1 − 𝜃)1−𝑥𝑛

= 𝜃∑𝑁
𝑛=1 𝑥𝑛(1 − 𝜃)∑𝑁

𝑛=1(1−𝑥𝑛)

= 𝜃∑𝑁
𝑛=1 𝑥𝑛(1 − 𝜃)∑𝑁

𝑛=1 1−∑𝑁
𝑛=1 𝑥𝑛

= 𝜃∑𝑁
𝑛=1 𝑥𝑛(1 − 𝜃)𝑁−∑𝑁

𝑛=1 𝑥𝑛

for some 𝜃 ∈ (0, 1).

20



Moreover, let’s say that we want to push this probability mass function forward along the
function

𝑠 ∶ {0, 1}𝑁 → [0, 𝑁]

(𝑥1, … , 𝑥𝑁) ↦ =
𝑁

∑
𝑛=1

𝑥𝑛.

The level sets of this function, 𝑠−1(𝑦) are given by all of the product elements with 𝑛 component
elements equalling one and 𝑁 − 𝑦 component elements equalling zero. Because there are

(𝑁
𝑦 ) = 𝑁!

𝑦! (𝑁 − 𝑦)!

different ways that we can set 𝑦 distinct components to one, there are that many elements in
the level set 𝑠−1(𝑦).
The probability mass function that defines the pushforward probability distribution over the
sum of ones is given by applying the general transformation rule,

𝑠∗𝑝(𝑦) = ∑
𝑥∈𝑠−1(𝑦)

𝑝(𝑥)

= ∑
𝑥∈𝑠−1(𝑦)

𝜃∑𝑁
𝑛=1 𝑥𝑛(1 − 𝜃)𝑁−∑𝑁

𝑛=1 𝑥𝑛

= ∑
𝑥∈𝑠−1(𝑦)

𝜃𝑦 (1 − 𝜃)𝑁−𝑦

= ⎡⎢
⎣

∑
𝑥∈𝑠−1(𝑦)

1⎤⎥
⎦

𝜃𝑦 (1 − 𝜃)𝑁−𝑦

= (𝑁
𝑦 )𝜃𝑦 (1 − 𝜃)𝑁−𝑦.

This is known as a Binomial probability mass function for its dependence on the binomial
coefficient.

4.3 Transforming Lebesgue Probability Density Functions

Unfortunately when working on real spaces we can no longer work with summation. Technically
the warping factor d𝑓∗𝜆𝑋/d𝜆𝑌 can be derived from a sophisticated theoretical analysis – see
for example Theorem 2.47 in Folland (1999) – but here we will work it out from the more
familiar properties of Riemann integration.

21



4.3.1 The Jacobian Correction

Let’s say that 𝑋 = ℝ𝑁 and 𝑌 = ℝ𝑁 are two rigid, 𝑁 -dimensional real spaces related by the
bijective and measurable transformation 𝑓 ∶ (𝑋, ℬℝ𝑁 ) → (𝑌 , ℬℝ𝑁 ). Moreover let 𝜆𝑋 and 𝜆𝑌
be the Lebesgue measures on 𝑋 and 𝑌 , respectively.

In this case the transformation rule for measure-informed integrals,

𝕀𝜆𝑋
[𝑔 ∘ 𝑓] = 𝕀𝜆𝑌

[d𝑓∗𝜆𝑋
d𝜆𝑌

⋅ 𝑔] ,

reduces to a relationship between Riemann integrals,

∫
ℝ𝑁

d𝑁𝑥 𝑔(𝑓(𝑥)) = ∫
ℝ𝑁

d𝑁𝑦 d𝑓∗𝜆𝑋
d𝜆𝑌

(𝑦) 𝑔(𝑦),

at least for sufficiently nice integrands 𝑔 ∶ 𝑌 → ℝ.

This closely matches the infamous change-of-variables property from calculus (Apostol (1969)).
For a transformation ℎ ∶ 𝑌 → 𝑋 and integrand 𝑞 ∶ 𝑋 → ℝ we have

∫
ℝ𝑁

d𝑁𝑥 𝑞(𝑥) = ∫
ℝ𝑁

d𝑁𝑦 |det Jℎ(𝑦)| 𝑞(ℎ(𝑦)),

where |det Jℎ(𝑦)| is the absolute value of the determinant of the Jacobian matrix with
elements

𝐽ℎ,𝑖𝑗(𝑦) = 𝜕ℎ𝑖
𝜕𝑦𝑗

(𝑦).

When working with one-dimensional real spaces the Jacobian matrix reduces to a singe ele-
ment,

Jℎ(𝑦) = 𝜕ℎ
𝜕𝑦 (𝑦) ≡ 𝐽ℎ(𝑦),

and the determinant becomes an identity,

|det Jℎ(𝑦)| = |det 𝐽ℎ(𝑦)| = |𝐽ℎ(𝑦)|.

Taking ℎ = 𝑓−1 and 𝑞 = 𝑔 ∘ 𝑓 this becomes

∫
ℝ𝑁

d𝑁𝑥 𝑔(𝑓(𝑥)) = ∫
ℝ𝑁

d𝑁𝑥 |det J𝑓−1(𝑦)| 𝑔(𝑓(𝑓−1(𝑦))

∫
ℝ𝑁

d𝑁𝑥 𝑔(𝑓(𝑥)) = ∫
ℝ𝑁

d𝑁𝑥 |det J𝑓−1(𝑦)| 𝑔(𝑦).

Conveniently this simplifies a bit due to the fact that the Jacobian matrix of 𝑓−1 at 𝑦 is equal
to the matrix inverse of the Jacobian matrix of 𝑓 at 𝑥 = 𝑓−1(𝑦),

J𝑓−1(𝑦) = J−1
𝑓 (𝑓−1(𝑦)).

22



In particular this relationship implies that

det J𝑓−1(𝑦) = 1
det J𝑓(𝑓−1(𝑦))

and consequently
∫

ℝ𝑁
d𝑁𝑥 𝑔(𝑓(𝑥)) = ∫

ℝ𝑁
d𝑁𝑥 1

|det J𝑓(𝑓−1(𝑦))| 𝑔(𝑦).

To review: for any sufficiently well-behaved integrand 𝑔 ∶ 𝑌 → ℝ we have both

∫
ℝ𝑁

d𝑁𝑥 𝑔(𝑓(𝑥)) = ∫
ℝ𝑁

d𝑁𝑦 d𝑓∗𝜆𝑋
d𝜆𝑌

(𝑦) 𝑔(𝑦)

and
∫

ℝ𝑁
d𝑁𝑥 𝑔(𝑓(𝑥)) = ∫

ℝ𝑁
d𝑁𝑥 1

|det J𝑓(𝑓−1(𝑦))| 𝑔(𝑦).

Comparing the two equations the warping factor must be given by (Figure 10)

d𝑓∗𝜆𝑋
d𝜆𝑌

(𝑦) 𝜆𝑌= 1
|det J𝑓(𝑓−1(𝑦))| .

Because the warping factor reduces to a Jacobian determinant it is also known as a Jacobian
correction.

x1

x2

1

|detJf (y1, y2)|
> 1

1

|detJf (y1, y2)|
= 1

1

|detJf (y1, y2)|
< 1

y1

y2

Figure 10: The reciprocal of the absolute value of the Jacobian determinant function,
1/det J𝑓(𝑓−1(𝑦)) quantifies how warped the input Lebesgue measure appears rela-
tive to the output Lebesgue measure. If the warping factor is smaller than one then
the input volumes appear to expand and if the warping factor is larger than one
then the input volumes appear to contract.

A nearly universal convention in applied probability theory ignores the fact that this relation-
ship has to hold for only 𝜆𝑌 -almost all 𝑦 ∈ 𝑌 and just takes the warping factor to be

d𝑓∗𝜆𝑋
d𝜆𝑌

(𝑦) = 1
|det J𝑓(𝑓−1(𝑦))| .

23



for all output points 𝑦 ∈ 𝑌 .

With this convention the transformation rule for Lebesgue probability density functions along
bijective transformations becomes (Figure 11, Figure 12)

𝑓∗𝑝(𝑦) 𝜆𝑌= 𝑝(𝑓−1(𝑦)) d𝑓∗𝜆𝑋
d𝜆𝑌

(𝑦)
𝜆𝑌= 𝑝(𝑓−1(𝑦)) 1

|det J𝑓(𝑓−1(𝑦))| .

p(x)

x

y

x

y

f∗p(y)

Figure 11: In general bijective functions from one real space to another warp both probability
distributions and reference Lebesgue measures. In order to transform Lebesgue
probability density functions we have to account for both of these changes.

All of this careful work ensures that probability allocations derived from the pushforward
Lebesgue probability density function are consistent with the probability allocations derived
from the initial Lebesgue probability density function. In particular we always have (Fig-

24



p
(
f−1(y)

)
· |Jf (y)|−1

p
(
f−1(y)

)
y

Figure 12: Ignoring the Jacobian correction that accounts for the change in Lebesgue reference
measure results in erroneous pushforward probability density functions. This error
affects not only the normalization of the pushforward probability density function
but also its shape.

ure 13)

𝜋(x) = 𝑓∗𝜋(𝑓∗x)
𝔼𝜋[𝐼x] = 𝔼𝑓∗𝜋[𝐼𝑓∗x]

𝕀𝜆𝑋
[𝑝 ⋅ 𝐼x] = 𝔼𝜆𝑌

[𝑓∗𝑝 ⋅ 𝐼𝑓∗x]

∫
ℝ𝑁

d𝑁𝑥 𝑝(𝑥) ⋅ 𝐼x(𝑥) = ∫
ℝ𝑁

d𝑁𝑦 𝑓∗𝑝(𝑦) ⋅ 𝐼𝑓∗x(𝑦)

∫
x
d𝑁𝑥 𝑝(𝑥) = ∫

𝑓∗x
d𝑁𝑦 𝑓∗𝑝(𝑦).

When applying the transformation rule for probability density functions in practice the most
common mistake is forgetting the Jacobian correction entirely. The second most common error
is forgetting to take the reciprocal of the Jacobian determinant, mistakingly using

𝑓∗𝑝(𝑦) 𝜆𝑌= 𝑝(𝑓−1(𝑦)) |det J𝑓(𝑓−1(𝑦))|.

To avoid this mistake I rely on a mneumonic to help me remember the proper orientation of
the Jacobian determinant. I start with the informal integral relationship,

∫ d𝑦 𝑓∗𝑝(𝑦) = ∫ d𝑥 𝑝(𝑥),

drop the integral signs,
d𝑦 𝑓∗𝑝(𝑦) = d𝑥 𝑝(𝑥),

25



x

x1

x2

π(x)

f∗(x)

y1

y2

π∗(f∗(x))

Figure 13: The proper transformation rule for Lebesgue probability density functions allows us
to consistently compute probability allocations on the input space and the output
space.

and then very informally divide by the differentials,

d𝑦 𝑓∗𝑝(𝑦) = d𝑥 𝑝(𝑥)

𝑓∗𝑝(𝑦) = 𝑝(𝑥) d𝑥
d𝑦 (𝑥)

𝑓∗𝑝(𝑦) = 𝑝(𝑥(𝑦)) 1
d𝑦
d𝑥(𝑥)

𝑓∗𝑝(𝑦) = 𝑝(𝑥) 1
|det J𝑓(𝑥)|

𝑓∗𝑝(𝑦) = 𝑝(𝑓−1(𝑦)) 1
|det J𝑓(𝑓−1(𝑦))| .

This is by no means a formal calculation – each step is extremely mathematically sloppy – but
the result is quick to derive and gives the correct orientation of the Jacobian correction.

Is there anything we can do about non-bijective functions? We might be tempted to utilize
the Dirac delta function to try to define interated expectation values on the input space,

∫
𝑋

d𝑥 𝜋(𝑥) 𝑔(𝑓(𝑥)) = ∫
𝑌

d𝑦 [∫
𝑓−1(𝑦)

d𝑥 𝜋(𝑥)] 𝑔(𝑦)

= ∫
𝑌

d𝑦 [∫
𝑋

d𝑥 𝜋(𝑥)𝛿(𝑓(𝑥) − 𝑦)] 𝑔(𝑦)

so that
𝑓∗𝜋(𝑦) 𝜆𝑌= ∫

𝑋
d𝑥 𝜋(𝑥)𝛿(𝑓(𝑥) − 𝑦),

26



and indeed this notation is not uncommon in some applied fields.

Unfortunately it’s not clear how we can actually implement these constrainted integrals in
practice. In the next chapter we’ll see how we can formalize this strategy using conditional
expectation values to implement integrals over level sets.

4.3.2 Examples

After all of that discussion let’s put these results in practice with a few concrete examples.

4.3.2.1 Translating and Scaling

Consider a probability distribution over a rigid real line, or a fixed parameterization of a
flexible real line, specified by a normal probability density function

normal(𝑥; 𝜇, 𝜎) = 1√
2𝜋𝜎 exp (−1

2 (𝑥 − 𝜇
𝜎 )

2
) .

A translation function maps each point in the input real line to a translated point in the output
real line,

𝑡𝛿 ∶ ℝ → ℝ
𝑥 ↦ 𝑥 + 𝛿.

This function is a bijection, with the inverse function translating points in the opposite direc-
tion,

𝑡−1
𝛿 ∶ ℝ → ℝ

𝑦 ↦ 𝑦 − 𝛿.

Because the translation operator maps a one-dimensional space into another one-dimensional
space its Jacobian determinant reduces to a single derivative function,

det J𝑡𝛿
(𝑥) = d𝑡𝛿

d𝑥 (𝑥)

= d
d𝑥(𝑥 + 𝛿)

= 1.

Consequently the Jacobian correction is particularly straightforward,

1
|det J𝑡𝛿

(𝑡−1
𝛿 (𝑦))| = 1

|1| = 1.

27



With the Jacobian correction in hand the pushforward of a normal density function along a
translation operator becomes

(𝑡𝛿)∗normal(𝑦; 𝜇, 𝜎) = normal(𝑡−1
𝛿 (𝑦); 𝜇, 𝜎)) ⋅ 1

|det J𝑡𝛿
(𝑡−1

𝛿 (𝑦))|
= normal(𝑦 − 𝛿; 𝜇, 𝜎) ⋅ 1

= 1√
2𝜋𝜎 exp (−1

2 (𝑦 − 𝛿 − 𝜇
𝜎 )

2
)

= 1√
2𝜋𝜎 exp (−1

2 (𝑦 − (𝜇 + 𝛿)
𝜎 )

2
)

= normal(𝑦; 𝜇 + 𝛿, 𝜎).

In other words pushing a normal probability density function along a translation operator re-
sults in another normal probability density function, only one with a shifted location parameter
(Figure 14).

normal(x;µ, σ) (tδ)∗normal(x;µ, σ)

µ µ+ δ

x

Figure 14: A translation operator 𝑡𝛿 shifts a normal probability density function with location
parameter 𝜇 to another normal probability density function with location parameter
𝜇 + 𝛿. The scale parameter 𝜎 is unaffected.

A scale function maps each point in the input space to a scaled point in the output space,

𝑠𝜙 ∶ ℝ → ℝ
𝑥 ↦ 𝜙 ⋅ 𝑥

28



for any 𝜙 > 0. This is also a bijection, with the inverse function scaling points by the reciprocal
of 𝜙,

𝑠−1
𝜙 ∶ ℝ → ℝ

𝑦 ↦ 𝑦
𝜙.

The Jacobian determinant once again reduces to just a single derivative function,

det J𝑠𝜙
(𝑥) = d𝑠𝜙

d𝑥 (𝑥)

= d
d𝑥(𝜙 ⋅ 𝑥)

= 𝜙

In this case the Jacobian correction is slightly more complicated,

1
|det J𝑠𝜙

(𝑠−1
𝜙 (𝑦))| = 1

|𝜙| = 1
𝜙.

The pushforward of a normal density function along a scale function is then given by

(𝑠𝜙)∗normal(𝑦; 𝜇, 𝜎) = normal(𝑠−1
𝜙 (𝑦); 𝜇, 𝜎)) ⋅ 1

|det J𝑠𝜙
(𝑠−1

𝜙 (𝑦))|

= normal(𝑦/𝜙; 𝜇, 𝜎) 1
𝜙

= 1√
2𝜋𝜎 ⋅ 1

𝜙 exp (−1
2 (𝑦/𝜙 − 𝜇

𝜎 )
2
)

= 1√
2𝜋(𝜙 ⋅ 𝜎) exp (−1

2 (𝑦 − 𝜙 ⋅ 𝜇
𝜙 ⋅ 𝜎 )

2
)

= normal(𝑦; 𝜙 ⋅ 𝜇, 𝜙 ⋅ 𝜎).

As before pushing a normal probability density function along a scale operator results in
another normal probability density function. In this case, however, both the location and
scale parameters are affected (Figure 15).

These two operations can also be combined into a single function that first scales and then
translates,

𝑠𝑡𝛿,𝜙 = 𝑡𝛿 ∘ 𝑠𝜙

with

𝑠𝑡𝛿,𝜙 ∶ ℝ → ℝ
𝑥 ↦ 𝜙 ⋅ 𝑥 + 𝛿.

29



normal(x;µ, σ)

(sφ)∗normal(x;µ, σ)

µ φ · µ
x

Figure 15: A scale operator 𝑠𝜙 transforms a normal probability density function with location
parameter 𝜇 and scale parameter 𝜎 into normal probability density function with
the inflated location parameter 𝜙 ⋅ 𝜇 and inflated scale parameter 𝜙 ⋅ 𝜎.

This composition defines another bijection, with the inverse function scaling points by the
reciprocal of the scaling parameter before translating in the opposite direction,

𝑠𝑡−1
𝛿,𝜙 = 𝑠−1

𝜙 ∘ 𝑡−1
𝛿

with

𝑠𝑡−1
𝛿,𝜙 ∶ ℝ → ℝ

𝑦 ↦ 𝑦 − 𝛿
𝜙 .

The Jacobian determinant for this composition is

det J𝑠𝑡𝛿,𝜙
(𝑥) = d𝑠𝑡𝛿,𝜙

d𝑥 (𝑥)

= d
d𝑥(𝜙 ⋅ 𝑥 + 𝛿)

= 𝜙,

with the Jacobian correction becoming

1
|det J𝑠𝑡𝛿,𝜙

(𝑠𝑡−1
𝛿,𝜙(𝑦))| = 1

|𝜙| = 1
𝜙.

30



Pushing forward a normal probability density function along this composite function then
gives

(𝑠𝑡𝛿,𝜙)∗normal(𝑦; 𝜇, 𝜎) = normal(𝑠𝑡−1
𝛿,𝜙(𝑦); 𝜇, 𝜎) ⋅ 1

|det J𝑠𝑡𝛿,𝜙
(𝑠−1

𝜙 (𝑦))|
= normal((𝑦 − 𝛿)/𝜙; 𝜇, 𝜎) ⋅ (1/𝜙)

= 1√
2𝜋𝜎

1
𝜙 exp (−1

2 ((𝑦 − 𝛿)/𝜙 − 𝜇
𝜎 )

2
)

= 1√
2𝜋(𝜙 ⋅ 𝜎) exp (−1

2 (𝑦 − (𝜙 ⋅ 𝜇 + 𝛿)
𝜙 ⋅ 𝜎 )

2
)

= normal(𝑦; 𝜙 ⋅ 𝜇 + 𝛿, 𝜙 ⋅ 𝜎).

No matter how we scale and translate an ambient real line, a normal probability density
function will always map into another normal probability density function.

In fact if we start with the unit normal probability density function

unit-normal(𝑥) = normal(𝑥; 0, 1),

then the pushforward probability density function along the scale-translation function be-
comes

(𝑠𝑡𝛿,𝜙)∗unit-normal(𝑦) = normal(𝑦; 𝛿, 𝜙).
Consequently we can generate every normal probability density function as a suitable trans-
formation of an initial, unit normal probability density function. Because of this the normal
family of probability density functions is known as a location-scale family.

4.3.2.2 Squeezing A Real Line Into An Interval

For a more sophisticated example let’s look at the logistic function that we introduced in
Section 2.1,

logistic ∶ ℝ → (0, 1)

𝑥 ↦ 1
1 + exp(−𝑥).

The logistic function is bijective and its inverse function is known as the logit function,

logit ∶ (0, 1) → ℝ
𝑦 ↦ log 𝑦

1 − 𝑦 .

31

@sec:terminology


Because this is a one-dimensional transformation the Jacobian determinant reduces to a single
derivative function,

det Jlogistic(𝑥) = dlogistic
d𝑥 (𝑥)

= d
d𝑥 ( 1

1 + exp(−𝑥))

= − exp(−𝑥)
(1 + exp(−𝑥))2

= − 1
1 + exp(−𝑥) (1 − 1

1 + exp(−𝑥))

= −logistic(𝑥) (1 − logistic(𝑥)) .
The Jacobian correction then becomes

1
|det Jlogistic(logit(𝑦))| = 1

| − logistic(logit(𝑦)) (1 − logistic(logit(𝑦))) |

= 1
logistic(logit(𝑦)) (1 − logistic(logit(𝑦)))

= 1
𝑦 (1 − 𝑦).

The pushforward of a normal density function along the logistic function is now given by
(Figure 16)

logistic∗normal(𝑦; 𝜇, 𝜎) = normal(logit(𝑦); 𝜇, 𝜎) ⋅ 1
|det Jlogistic(logit(𝑦))|

= normal(logit(𝑦); 𝜇, 𝜎) 1
𝑦(1 − 𝑦).

5 Characterizing One-Dimensional Pushforward Probability
Distributions

Probability distributions on high-dimensional spaces are overwhemlming objects that are dif-
ficult to study directly. In particular we cannot convey the entirety of a high-dimensional
probability distribution in a single visualization. We can, however, push a high-dimensional
probability distribution forward to many one-dimensional probability distributions that can
be visualized (Figure 17), not unlike a carpenter checking if a piece of wood is warped by
staring down each edge one at a time.

More formally given a probability space (𝑋, 𝒳, 𝜋) and a collection of measurable functions

𝑓𝑛 ∶ (𝑋, 𝒳) → (ℝ, ℬℝ)

32



p(x)

x

y

x

y

f∗p(y)

Figure 16: The logistic function squeezes a real line into a unit interval, transforming Lebesgue
probability density functions over all real numbers into a Lebesgue probability den-
sity function over real numbers 0 < 𝑦 < 1.

33



+x1

+x2 +x3

(a)

+x1
+x3

+x2

+x3

+x1

+x2

(b)

Figure 17: In general (a) High-dimensional mathematical objects, such probability distribu-
tions over high-dimensional spaces, are difficult to interpret directly. (b) Summary
functions map high-dimensional objects to low-dimensional objects, isolating behav-
iors that can be not only easier to digest but also straightforward to visualize.

34



we can construct a collection of one-dimensional pushforward probability distributions

(𝑓𝑛)∗𝜋.

Each of these pushforward probability distributions summarizes a different aspect of 𝜋; the
more interpretable the outputs of the function 𝑓𝑛 are the more interpretable that summary
will be.

In order to implementing these probabilistic summaries in practice, however, we need to be
able to characterize the pushforward probability distributions. Pushforward probability den-
sity functions would be particularly convenient for visualization (Figure 18), but at this point
we don’t know how to actually compute them yet for non-bijective summary functions. Un-
fortunately in the next chapter we’ll see that the necessary operations are often infeasible in
practice.

x2

x1

p(x1, x2)

y = f(x1, x2)

f∗p(y)

Figure 18: A pushforward probability density functions are particularly useful for visualizing
pushforward behavior extracted from a high-dimensional probability distribution,
but they often infeasible to construct in practice.

Fortunately in Chapter Five we learned about multiple ways to characterize one-dimensional
probability distributions using only expectation values. Moreover if we can compute expec-
tation values on the initial, high-dimensional ambient space then we can use the pullback of
expectation values,

𝔼𝑓∗𝜋[𝑔] = 𝔼𝜋[𝑔 ∘ 𝑓].
to implement these characterizations in practice.

For example in Section 3 we saw that the moments of one-dimensional pushforward distri-
butions can be evaluated as expectation values over the initial space. In particular we can
compute the mean and variance of the pushfoward probability distribution (𝑓𝑛)∗𝜋 can be
evaluated with the expectation values

𝕄(𝑓𝑛)∗𝜋 = 𝔼𝜋[𝑓𝑛]

and
𝕍𝑓∗𝜇 = 𝔼(𝑓𝑛)∗𝜋[(𝑓 − 𝕄(𝑓𝑛)∗𝜋)2],

35

https://betanalpha.github.io/assets/chapters_html/expectation_values.html
@sec:transforming-integrals


respectively. That is, of course, provided that both expectands are integrable.

We can also use expectation values to evaluate pushforward interval probabilities,

(𝑓𝑛)∗𝜋( (𝑦1, 𝑦2] ) = 𝔼(𝑓𝑛)∗𝜋 [𝐼(𝑦1,𝑦2]]
= 𝔼𝜋 [𝐼(𝑦1,𝑦2] ∘ 𝑓𝑛] .

These pushforward interval probabilities then allow us to construct histogram representations
of each pushforward probability distribution (Figure 19). The narrower the pushforward in-
tervals we use the more these histograms convey the same information that a pushforward
probability density function would, especially when we scale the bin probabilities by the inter-
val lengths as we discussed in Chapter Six, Section 4.4.

x2

x1

p(x1, x2)

f∗p(y)

y = f(x1, x2)

f∗π(bi)

l(bi)

Figure 19: Pushforward histograms visualize similar information as pushforward probability
density functions, especially when the binning is narrow, but are much easier to
construct.

In theory we can also use pushforward interval probabilities to construct the cumulative dis-
tribution functions for a given pushforward probability distribution by computing

𝑃𝑓∗𝜋(𝑦) = (𝑓𝑛)∗𝜋( (−∞, 𝑦] )
= 𝔼𝜋 [𝐼(−∞,𝑦] ∘ 𝑓𝑛]

for each 𝑦 ∈ ℝ. Unfortunately completely characterizing a pushforward cumulative distribu-
tion function in this way would require an infinite number of expectation value calculations
while typical computational budgets afford for only a finite number. Consequently in prac-
tice we have to be content with approximating pushforward cumulative distribution functions
(Figure 20).

Lastly we can often characterize one-dimensional pushforward probability distribution with
nested pushforward quantile intervals (Figure 21). While we typically won’t be able to compute
pushforward quantiles exactly, we can construct reasonable approximations to the 𝑝-th quantile
by iteratively searching possible values 𝑞𝑝 ∈ ℝ until

|(𝑓𝑛)∗𝜋( (−∞, 𝑞𝑝] ) − 𝑝| = |𝔼𝜋 [𝐼(−∞,𝑦] ∘ 𝑓𝑛] − 𝑝|

36

https://betanalpha.github.io/assets/chapters_html/density_functions.html#lebesgue-probability-densities-as-limiting-interval-probabilities


x2

x1

p(x1, x2)

Pf∗π(y)

y = f(x1, x2)

f ∗
π
(
(−
∞
,y
])

Figure 20: Aggregating bin probabilities also allows us to approximately visualize a pushfor-
ward cumualtive distribution function.

is sufficiently small.

x2

x1

p(x1, x2)

q0.1 q0.9

q0.2 q0.8

q0.3 q0.7

q0.4 q0.6

q0.5

y = f(x1, x2)

Figure 21: Nested quantile intervals provide a compact characterization of one-dimensional
pushforward distributions.

I personally find histogram characterizations to be the most robust compromise between prac-
tical feasibility and visual information density, and we will be using them often in this book.
Because they can be condensed into a single line nested quantile intervals can also be conve-
nient when visualizing many pushforward distributions at the same time (Figure 22). These
visualizations are also know as fan plots or ribbon plots.

6 Conclusion

The ability to transform probabilistic objects, in particular the ability to actually implement
these transformations in practice, is an extremely powerful tool in applied probability theory.
These transformations allow us to not only manipulate probability spaces into more convenient
forms but also distill high-dimensional probabilistic information to low-dimensional summary
spaces that are straightforward to visualize.

37



(fn)∗π

n

(a)

(fz)∗π

z

(b)

Figure 22: Nested quantile intervals are particularly useful for visualizing both (a) finite col-
lections of summary functions that can be indexed by integers 𝑛 ∈ ℤ and (b)
uncountably infinite collections of summary functions that can be indexed by real
numbers 𝑧 ∈ ℝ. These visualizations are somewhat limited because they don’t con-
vey the correlations between the summary function outputs but with that caveat
in mind they can be incredibly effective.

Acknowledgements

A very special thanks to everyone supporting me on Patreon: Adam Fleischhacker, Adriano
Yoshino, Alan Chang, Alessandro Varacca, Alexander Noll, Alexander Petrov, Alexan-
der Rosteck, Andrea Serafino, Andrew Mascioli, Andrew Rouillard, Andrew Vigotsky,
Angie_Hyunji Moon, Ara Winter, Austin Rochford, Austin Rochford, Avraham Adler, Ben
Matthews, Ben Swallow, Benoit Essiambre, Bradley Kolb, Brandon Liu, Brendan Galdo,
Brynjolfur Gauti Jónsson, Cameron Smith, Canaan Breiss, Cat Shark, Charles Naylor, Chase
Dwelle, Chris, Chris Jones, Christopher Cahill, Christopher Mehrvarzi, Colin Carroll, Colin
McAuliffe, Damien Mannion, Damon Bayer, dan mackinlay, Dan W Joyce, Dan Waxman,
Dan Weitzenfeld, Daniel Edward Marthaler, Darshan Pandit, Darthmaluus , David Galley,
David Wurtz, Denis Vlašiček, Doug Rivers, Dr. Jobo, Dr. Omri Har Shemesh, Dylan Maher,
Ed Cashin, Edgar Merkle, Eric LaMotte, Ero Carrera, Eugene O’Friel, Felipe González,
Fergus Chadwick, Finn Lindgren, Florian Wellmann, Francesco Corona, Geoff Rollins, Guido
Biele, Hamed Bastan-Hagh, Haonan Zhu, Hector Munoz, Henri Wallen, herr, hs, Hugo Botha,
Håkan Johansson, Ian, Ian Costley, idontgetoutmuch, Ignacio Vera, Ilaria Prosdocimi, Isaac
Vock, J, J Michael Burgess, Jair Andrade, James C, James Hodgson, James Wade, Janek
Berger, Jason Martin, Jason Pekos, Jason Wong, Jeff Burnett, Jeff Dotson, Jeff Helzner,
Jeffrey Erlich, Jesse Wolfhagen, Jessica Graves, Joe Wagner, John Flournoy, Jonathan H.
Morgan, Jonathon Vallejo, Joran Jongerling, Joshua Griffith, JU, Justin Bois, Karim Naguib,
Karim Osman, Kejia Shi, Kristian Gårdhus Wichmann, Kádár András, Lars Barquist, lizzie
, LOU ODETTE, Luís F, Marcel Lüthi, Marek Kwiatkowski, Mark Donoghoe, Markus P.,

38



Martin Modrák, Matt Moores, Matthew, Matthew Kay, Matthieu LEROY, Mattia Arsendi,
Maurits van der Meer, Michael Colaresi, Michael DeWitt, Michael Dillon, Michael Lerner,
Mick Cooney, Márton Vaitkus, N Sanders, N.S. , Name, Nathaniel Burbank, Nic Fishman,
Nicholas Clark, Nicholas Cowie, Nick S, Octavio Medina, Oliver Crook, Olivier Ma, Patrick
Kelley, Patrick Boehnke, Pau Pereira Batlle, Pieter van den Berg , ptr, Ramiro Barrantes
Reynolds, Ravin Kumar, Raúl Peralta Lozada, Riccardo Fusaroli, Richard Nerland, Robert
Frost, Robert Goldman, Robert kohn, Robin Taylor, Ryan Grossman, Rémi , S Hong, Scott
Block, Sean Pinkney, Sean Wilson, Sergiy Protsiv, Seth Axen, shira, Simon Duane, Simon
Lilburn, sssz, Stan_user, Stephanie Fitzgerald, Stephen Lienhard, Steve Bertolani, Stew
Watts, Stone Chen, Susan Holmes, Svilup, Tao Ye, Tate Tunstall, Tatsuo Okubo, Teresa
Ortiz, Theodore Dasher, Thomas Vladeck, Tiago Cabaço, Tim Radtke, Tobychev , Tom
McEwen, Tomáš Frýda, Tony Wuersch, Virginia Fisher, Vitaly Druker, Vladimir Markov, Wil
Yegelwel, Will Farr, Will Tudor-Evans, woejozney, yolhaj , Zach A, Zad Rafi, and Zhengchen
Ca.

References
Apostol, Tom M. 1969. Calculus. Vol. II: Multi-Variable Calculus and Linear Algebra, with

Applications to Differential Equations and Probability. Second. Blaisdell Publishing Co.
[Ginn; Co.], Waltham, Mass.-Toronto, Ont.-London.

Folland, G. B. 1999. Real Analysis: Modern Techniques and Their Applications. New York:
John Wiley; Sons, Inc.

License

A repository containing all of the files used to generate this chapter is available on GitHub.

The text and figures in this chapter are copyrighted by Michael Betancourt and licensed under
the CC BY-NC 4.0 license:

https://creativecommons.org/licenses/by-nc/4.0/

39

https://github.com/betanalpha/quarto_chapters/tree/main/7_transforming_probability_spaces

	Transforming \sigma-Algebras
	Transforming Measures
	Pushforward Terminology
	Lossy Pushforward Measures
	Lossless Pushforward Measures

	Transforming Measure-Informed Integrals
	Transforming Probability Density Functions
	Directly Transforming Probability Density Functions
	Transforming Probability Mass Functions
	Transforming Lebesgue Probability Density Functions
	The Jacobian Correction
	Examples


	Characterizing One-Dimensional Pushforward Probability Distributions
	Conclusion
	Acknowledgements
	References
	License

