Bae’s Theorem

Michael Betancourt

November 2024

Table of contents

8

Setup

Data Exploration

Homogeneous Customer Model

Independent, Heterogeneous Customer Model

Hierarchical Customer Model

Hierarchical Customer Model With Heterogeneous Affinities
Computational Considerations

Conclusion

Acknowledgements

License

Original Computing Environment

15
21
33
49
73
75
76
77

77

In 2006 Netflix announced the infamous Netflix Prize. The competition challenged anyone
to use a data set of customer movie reviews to inform predictions of a second, held-out set
of customer movie reviews. Superficially the Netflix challenge was a mixed success, although
from a broader perspective it demonstrated the perils of poorly-chosen metrics for predictive

performance and the subtleties of data privacy. Wikipedia summarizes the history well.

Beyond the Netflix Prize itself the corresponding data set is a nice example of some of the
problems that can arise in a wide range of practical applications. For instance not only are
customer preferences limited to five star ratings but also the interpretation of those ratings

https://web.archive.org/web/20200510213032/https://www.netflixprize.com/assets/rules.pdf
https://en.wikipedia.org/wiki/Netflix_Prize

are ambiguous and typically not consistent across customers. Some customers are generous
with their five star ratings while some are meager with not only their five star ratings but also
their four star and sometimes even three star ratings.

In addition to the idiosyncratic rating scales any analysis of this data also has to contend with
idiosyncratic customer preferences. Because not every customer will agree on the quality of a
given movie we have to decide whether we want to try to learn an aggregate preference or the
individual customer preferences.

In this chapter I will develop a Bayesian analysis of a subset of the Netflix training data set,
not in an attempt to win the Netflix Prize decades too late but rather to demonstrate some
of these common analysis challenges.

Importantly this analysis will not be the first time that Netflix has been associated with
Bayesian inference. In 2016 Amy Hogan (@alittlestats) presented her influential Bae’s Theo-
rem,

p(Netflix | chill) p(chill)

p(chill | Netflix) = P (Netfiix)

1 Setup

As always we begin by setting up our local R environment.

par(family="serif", las=1, bty="1",
cex.axis=1, cex.lab=1, cex.main=1,
xaxs="i", yaxs="i", mar = c(5, 5, 3, 5))

library(rstan)

rstan_options(auto_write = TRUE) # Cache compiled Stan programs
options(mc.cores = parallel::detectCores()) # Parallelize chains
parallel:::setDefaultClusterOptions(setup_strategy = '"sequential")

util <- new.env()
source('mcmc_analysis_tools_rstan.R', local=util)
source('mecmc_visualization_tools.R', local=util)

2 Data Exploration

The full Netflix Prize training data set consisted of 100,480,507 customer-movie pairs, each
accompanied by an ordinal rating between one and five “stars”, with one being the worst

https://twitter.com/alittlestats/status/664923862853922820
https://twitter.com/alittlestats/status/664923862853922820

rating and five being the best. The observed ratings spanned 480,189 anonymized customers
and 17,770 movies.

To allow for a more manageable analysis I reduced the full data set by considering only the first
1000 movies and then randomly subsampling 100 customers and 200 movies with probabilities
proportional to the total number of ratings. This left 2,415 total ratings.

Finally to facilitate modeling and add another layer of anonymizing obfuscating I relabeled
the selected customers and movies with contiguous indices.

data <- read_rdump('data/ratings.data.R')

cat (sprintf ("%s Customers", data$N_customers))

100 Customers

cat(sprintf("%s Movies", data$N_movies))

200 Movies

cat (sprintf("%s Total Ratings", data$N_ratings))

2415 Total Ratings

Despite favoring customers with more ratings in the data subsampling most of the selected
customers still rated only a few movies. Overall the training data set is relatively sparse, with
only a few customers contributing most of the ratings.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
util$plot_line_hist(table(data$customer_idxs),

-0.5, 95.5, 5,
xlab="Number of Ratings Per Customer")

Counts

0 | | | |

0 20 40 60 80

Number of Ratings Per Customer
Similarly most of the selected movies have only a few ratings.
par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
util$plot_line_hist(table(data$movie_idxs),

-0.5, 55.5, 2,
xlab="Number of Ratings Per Movie")

Warning in check_bin_containment(bin_min, bin_max, values): 2 values (1.0%)

fell above the binning.

40

30

20

Counts

10

U | | | | |
0 10 20 30 40 50
Number of Ratings Per Movie

This sparsity is even more evident if we visualize the customer-movie pairings.

xs <- seq(1l, data$N_movies, 1)
ys <- seq(l, data$N_customers, 1)
zs <- matrix(0, nrow=data$N _movies, ncol=data$N_customers)

for (n in 1:data$N_ratings) {
zs[data$movie_idxs[n], data$customer_idxs([n]] <- 1
}

par (mfrow=c(1, 1), mar = c(5, 5, 1, 1))

image(xs, ys, zs, col=c("white", util$c_dark_teal),
xlab="Movie", ylab="Customer")

100 —+ v osve g

B g L
e w2 bl .:. aly m A el

80 3. Af migE.)l il)i
T ribe iy 5 " |IJ'-"'. T RF BT

R Y R B
1

oo 1 ity i g
:IJ.'-:. "I-.--I "I'I.I-.,F.l“T |||:,“,” :

.-.|.| T
WSy

1
'1'-"'1 |r.!.' |..l|.'.'..., '.-r|-|||'l| r ;:\;l-;l'li)
40 % Mgtk S e e bt i. Wi |H
uwak 'I..l.' .ﬂql Al Jr.-i|.' [T 1"4.:." e
\ mlye
oL '5 --I:: AR
20 _.:'..':Z'.'...'* ?' A HH' | ,.!:

Customer

A e at A -|.-|'l ." NI I|-.-- .|.' al .-;-. I
Y ':.': ey FERE ,.:i doEES e
i mpetaladyp .' ' .,l."'. 4. ..ll.l u. ..:.'..i..i
50 100 150 20C
Movie

The observed ratings are slightly biased towards large values, with far more four star ratings
than two star ratings. From the data alone, however, we cannot determine whether or not this
is because most movies that had been rated were really good or because most customers were
just generous with their ratings.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))

util$plot_line_hist(data$ratings,
-0.5, 6.5, 1, xlab="Ratings")

800
]

600 —

400 —

Counts

200

Ratings

That said there is substantial heterogeneity in the ratings across customers. Customer 70, for
example, gave many high ratings while Customer 23 gave many low ratings.

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (c in (7, 23, 40, 70, 77, 100)) {
util$plot_line_hist(data$ratings[data$customer_idxs == c],
-0.5, 6.5, 1,
xlab="Rating", main=paste('Customer', c))

Customer 7 _Customer 23 Customer 40

25 — _ 50 20 -
20 407 15 -
[%] [%2] [%]
£ 15- g s0- £
S) o) o 10
o 104 O 20 - o
5 10 57
O —=7rrrrTT O —=7TrrT7TT 0-
02 46 02 46 02 46
Rating Rating Rating
Customer 70 Customer 77 Customer 10(
35 -
15 30 8
2 g 257 2 64
c c 20 4 c
3 101 3 3
(@] O 154 O 4 —
5 10 H 2
5 -
O —=1TrTTTT 0- O —=7TrrTTTT
02 46 02 46 02 46
Rating Rating Rating

Similarly we see strong variation in the observed ratings across movies. Movies 117 and 180
are particularly well-reviewed.

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {
util$plot_line_hist(data$ratings[data$movie_idxs == m],
-0.5, 6.5, 1,
xlab="Rating", main=paste('Movie', m))

Movie 33 Movie 53 Movie 61

20 - 5 4 7
4 6
@ 157 a @ 57
o 10+ o 2 (&} 3 -
2 —
5 a
1 14
0 - 0 - 0 -
02 46 02 46 02 46
Rating Rating Rating
Movie 80 Movie 117 Movie 180
5 4 25 | 10 H
4 20 8
]]]
5 34 5 15 5 64
[e] [e] [}
o 5 © 04 o 4
1 5 4 2 7
0- O —7TrrTTTT O =7TrrTTTT
0246 0246 0246
Rating Rating Rating

When critiquing any model of these ratings we want to be able to interrogate this variation
in rating behavior across customers and movies. Even with the subsampled data, however, a
histogram of ratings for each customer and movie would be too ungainly.

One alternative approach is to compute a scalar summary of the ratings within each group,
and then construct a histogram of those stratified values. For example we might consider
histograms of empirical means stratified by customer or movie.

par (mfrow=c(1, 2), mar=c(5, 5, 2, 1))

mean_rating_customer <-
sapply(1:data$N_customers,
function(c) mean(data$ratings[data$customer_idxs == c]))
util$plot_line_hist(mean_rating_customer,
©, B, i,
xlab="Customer-wise Average Ratings")

mean_rating_movie <-
sapply(1:data$N_movies,
function(m) mean(data$ratings[data$movie_idxs == m]))
util$plot_line_hist(mean_rating movie,

0, 6, 0.5,
xlab="Movie-wise Average Ratings")

70 — 80 —

60 —

50 60 —
(2] (2]
£ 40 c
3 o 40
) 30)

20 — 20

10

e 0
0 2 4 6 0 2 4 6

Customer—wise Averag Movie—-wise Average |

Of course an empirical mean captures only some of the rating behavior within each strata. We
can capture more with a summary that is sensitive to the dispersion of ratings in each strata,
such as the empirical variance or empirical entropy.

Here let’s go with the empirical variance, or rather a modified empirical variance that defaults
to zero when a strata consists of only one value.

safe_var <- function(vals) {
if (length(vals) == 1)
(9]
else
(var(vals))

par (mfrow=c(1, 2), mar=c(5, 5, 2, 1))

var_rating_ customer <-
sapply(1:data$N_customers,
function(c) safe_var(data$ratings[data$customer_idxs == c]))
util$plot_line_hist(var_rating_customer,

10

0, 5, 0.5,
xlab="Customer-wise Rating Variances")

var_rating movie <-
sapply(1:data$N_movies,
function(m) safe_var(data$ratings[data$movie_idxs == m]))
util$plot_line_hist(var_rating_movie,
0, 5, 0.5,
xlab="Movie-wise Rating Variances")

60 —
40 —
50
on 307 s 40
c c
8 8 30
O 204 O
20
10
10
0 o
0O 2 4 0O 2 4
Customer—wise Rating Movie—-wise Rating Ve

The main limitation with these stratified summary statistics is that they are sensitive to only
the marginal variation across movies and customers. In other words they are sensitive to
heterogeneity across movies or customers but not heterogeneity across movies and customers
at the same time. Unfortunately because each customer-movie pair has at most one rating,
and most have no ratings, we can’t just stratify summary statistics by both customer and
movie.

One potential compromise is to construct empirical covariances for each pair of customers or
movies. For example the empirical covariance between two movies m,; and m, is defined by

1 Je

:5m11n2 = ﬁQOl = W Z(Tcml - ﬂml) ’ (rch - :a’mQ)

c=1

11

where N is the number of customers, r,, is the rating given to movie m by customer ¢, and

. 1 e

= — T
K NC i cm

The immediate issue is that, because not every customer rates every movie, many of the r_,,
in these sums will be undefined.

All we can do is limit the sums to the customers who have rated both movies. More formally
let ¢, denote the set of customers who have rated movie m and N ,, denote the number
of elements in that set. Similarly let c,, ,, denote the set of customers who have rated both
movies my and my with N¢ ,,, ., the number of elements in that set. Then we can define

pm1m2 = pm2m1

1 ~ "
1 Z (rcrn1 - :u’ml) ’ (rcm2 - :u’mQ)

chmlmz T cec

m1ma

with
1

m = Z TCTTL
C,m CEC,,

the movie-wise empirical means that we’ve already constructed.

All of this said given the relative sparsity of the observed ratings the set c,, ,, will be empty
for most pairs of movies. Even fewer pairs of movies will have the N¢ ,,, ,,,, > 1 needed for
Prm,m, to be well-defined, let alone N¢ ,, ,,,, large enough for p,, ,, to provide an informative
summary.

We can avoid any ill-defined or poorly informative empirical covariances by including only
those movie pairs with N¢ ,, ., sufficiently large enough in the final histogram. This also has
the added benefit of reducing the total number of summaries that we have to bin into the final
histogram visualization. Here I will require N¢ ,, ., > 7.

Now that we’ve carefully laid out the math the implementation is relatively straightforward.
First we loop over the observed ratings twice, incrementing the partial sums for each pair of
movies when appropriate. This gives us

myme Tem, Aml ’ C'm2_A7TL2
Ym > (T, = fig,) - (7 [,)

CECyy my

and

Ne mim, = Z 1.

CECry my

12

covar_rating movie <- matrix(0,
nrow=data$N_movies,
ncol=data$N_movies)

movie_pair_counts <- matrix(O0,
nrow=data$N_movies,
ncol=data$N_movies)

for (nl in 1:data$N_ratings) {
for (n2 in 1:data$N_ratings) {
if (data$customer_idxs[nl] == data$customer_idxs[n2]) {
ml <- data$movie_idxs([n1]
m2 <- data$movie_idxs[n2]
y <- (data$ratings[nl] - mean_rating movie[ml]) *
(data$ratings[n2] - mean_rating_movie[m2])

covar_rating_movie[ml, m2] <- covar_rating movie[ml, m2] + y
covar_rating _movie[m2, ml] <- covar_rating movie[m2, ml] + y
movie_pair_counts[ml, m2] <- movie_pair_counts[ml, m2] + 1
movie_pair_counts[m2, m1] <- movie_pair_counts[m2, m1] + 1

Next we compute

~

)

~ - MMy
pm1m2 -

—1

C,mimy

for each pair of movies where N ,, ,, is larger than 7.

m_pairs <- list()
covar_rating movie_filt <- c()

for (ml in 2:data$N_movies) {
for (m2 in 1:(m1 - 1)) {
if (movie_pair_counts[ml, m2] > 7) {
m_pairs[[length(m_pairs) + 1]] <- c(ml, m2)
covar_rating movie_filt <- c(covar_rating movie_filt,
covar_rating movie[ml, m2] /
(movie_pair_counts[ml, m2] - 1))

13

Finally we bin these values into a histogram that visualizes the range of these partial empirical
covariance behaviors.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
util$plot_line_hist(covar_rating movie_filt,

-4, 4, 0.25,
xlab="Movie-wise Rating Covariances")

800 —

600 —

Counts

400 —

200 —

Movie-wise Rating Covariances

In order to construct posterior retrodictive checks later on we will need to select the poste-
rior predictive values for these same selected movie pairs. We might as well construct the
appropriate variable names now and have them ready.

covar_rating movie_filt_names <-
sapply(m_pairs,
function(p) pasteO('covar_rating movie_pred[',

plil, ',', pl2], '1'))

All of this said I think that there is still a lot of opportunity for better summary statistics in
applications like these.

14

3 Homogeneous Customer Model

Now that we’ve familiarized ourselves with the data we can make our first attempt at modeling
the data generating process that, well, generated it.

First and foremost we need to account for both the ordering and discreteness of the five star
rating system. Fortunately this is straightforward with the latent cut point construction that I
discuss in my chapter on ordinal modeling. At the same time we can use the induced Dirichlet
prior model to avoid any unreasonable behavior in those cut points.

We can then model the consumer preference for each movie with a separate affinity parameter
that shifts the latent probability density function relative to the fixed cut points, and hence
the induced probabilities for each rating. Note that we can interpret this construction as a
bipartide pair-wise comparison model that contrasts the austerity of customers to the quality
of each movie.

The subtlety with this interpretation is that the customer austerity is not a separate parameter
but rather implicit in the translation freedom of the cut points. Setting the anchor point in the
induced Dirichlet prior model to zero effectively removes this translation freedom and centers
the customer austerity around zero.

Initially we will assume that the customer behavior is homogeneous so that we need only a
single set of cut points. On the other hand each movie needs to be modeled with a distinct
affinity parameter.

Instead of modeling those parameters independently we will assume that our domain expertise
about the movies is exchangeable so that we can model with hierarchically. To avoid degeneracy
in the pair-wise comparisons we will need to anchor the population location to zero, the
same anchor location used in the induced Dirichlet prior model. Finally we will begin with a
monolithic non-centered parameterization given the sparsity of observed ratings.

fit <- stan(file="stan_programs/modell.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Despite the initial model complexity there are no diagnostic issues indicating suspect compu-
tation.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

15

https://betanalpha.github.io/assets/case_studies/ordinal_regression.html
https://betanalpha.github.io/assets/chapters_html/pairwise_comparison_modeling.html

samplesl <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samplesi,
c('gamma_ncp',
'tau_gamma',
'cut_points'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Consequently we're ready to investigate this model’s retrodictive performance.

The model appears to be flexible enough to capture the behavior of the aggregate ratings
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samplesl, 'rating pred', -0.5, 6.5, 1,

baseline_values=data$ratings,
xlab="All Ratings")

800 — —
600 —

i E

£

3 400 -

@)

200

All Ratings

16

On the other hand the retrodictive performance is much worse if we look at individual customer
behaviors. In particular there is much more heterogeneity in the observed data than what
the model can reproduce, which makes sense given that we explicitly assumed homogeneous
customer behavior.

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (¢ in c(7, 23, 40, 70, 77, 100)) {
names <- sapply(which(data$customer_idxs == c),
function(n) pasteO('rating pred[', n, ']1'))
filtered_samples <- util$filter_expectands(samplesl, names)

customer_ratings <- data$ratings[data$customer_idxs == c]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,

baseline_values=customer_ratings,
xlab="Ratings",
main=paste('Customer', c))

}
Customer 7 Customer 23 Customer 40
20
£ 15 a 2
c c c
2 2 2
O 10 i o o
54 o i
i
O -TrrrrTT
02 46 02 46 02 46
Ratings Ratings Ratings
Customer 70 Customer 77 12 Customer 10(
15 10
2 E 2 2 87 ‘
c 104 f £ E &
o o o
o lI o o 4
5 -
Ed 27
O —FTrTTTT 0 -
02 46 02 46 02 46
Ratings Ratings Ratings

On the other hand the model doesn’t seem to have a problem capturing the heterogeneity in
the observed ratings across movies, at least for this quick spot check.

17

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {
names <- sapply(which(data$movie_idxs == m),
function(n) pasteO('rating_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samplesl, names)

movie_ratings <- data$ratings[data$movie_idxs == m]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,

baseline_values=movie_ratings,
xlab="Ratings",
main=paste('Movie', m))

b
Movie 33 72 Movie 53 8 - Movie 61
6_
54 @ 67
] 2 2
o o 31 o
Z—I 2
- s
0 - 0 -
0246 0246 0246
Ratings Ratings Ratings
g — Movie 80 Movie 117 10 —Movie 180
. 25
5 1 8
2 47 | g 207 2 g I
= S 5 f 5
§ 7 8 8 44 |
2 I 10
1 I 5 - 2
0 - 0 - 0 -
0246 0246 0246
Ratings Ratings Ratings

To really investigate the variation in retrodictive performance, however, we need to look beyond
just a few customers and movies. Instead we can examine the behavior of all customers and
movies at the same time with histograms of stratified summary statistics.

Here we see that the posterior predictive behavior of the customer-wise means are more nar-
rowly distributed than what we see in the observed data. At the same time the posterior

18

predictive customer-wise variances concentrate at larger values than the observed customer-
wise variances.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samplesl, 'mean_rating customer_pred',
0, 6, 0.5,
baseline_values=mean_rating_customer,
xlab="Customer-wise Average Ratings")

util$plot_hist_quantiles(samplesl, 'mean_rating movie_pred',
0, 6, 0.6,
baseline_values=mean_rating_movie,
xlab="Movie-wise Average Ratings")

util$plot_hist_quantiles(samplesl, 'var_rating_ customer_pred',
0, 7y 0.8,
baseline_values=var_rating_customer,
xlab="Customer-wise Rating Variances")

Warning in check_bin_containment (bin_min, bin_max, collapsed_values,
"predictive value"): 232 predictive values (0.1%) fell above the binning.

util$plot_hist_quantiles(samplesl, 'var_rating movie_pred',
0, 7, 0.5,
baseline_values=var_rating movie,
xlab="Movie-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 1348 predictive values (0.2%) fell above the binning.

19

50 — = 80 - =
g 407 k £ 60
3 30 7 3 40 -
O 20 O
10 20 -
0 — 0 —
0 2 4 6 0 2 4 6
Customer-wise Average | Movie-wise Average Ra
50 —
g 407 2
S 30 5
S 20 S
10
0 T
0O 2 4 6 0O 2 4 &6
Customer-wise Rating Va Movie-wise Rating Varia

Finally the collection of selected movie covariances appears to be more heavy-tailed in the
observed data relative to the posterior predictions.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

filtered_samples <-
util$filter_expectands(samplesi,
covar_rating movie_filt_names)

util$plot_hist_quantiles(filtered_samples, 'covar_rating movie_pred',
-4.25, 4.25, 0.25,
baseline_values=covar_rating movie_filt,
xlab="Filtered Movie-wise Rating Covariances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 282 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2310 predictive values (0.0%) fell above the binning.

20

800 —

600 —

400 —

Counts

200

Filtered Movie-wise Rating Covarianc

4 Independent, Heterogeneous Customer Model

All of our retrodictive checks tell a consistent story — customers do not rate movies the same
way as each other. Fortunately it’s straightforward to just model each customer’s idiosyncratic
behavior with their own set of cut points.

fit <- stan(file="stan_programs/model2.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Frustratingly the computation suffers from a few stray divergences.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

Chain 1: 1 of 1024 transitions (0.1%) diverged.
Chain 2: 6 of 1024 transitions (0.6%) diverged.

Chain 3: 2 of 1024 transitiomns (0.2}) diverged.

21

Chain 4: 1 of 1024 transitions (0.1%) diverged.

Divergent Hamiltonian transitions result from unstable numerical
trajectories. These instabilities are often due to degenerate target
geometry, especially "pinches". If there are only a small number of
divergences then running with adept_delta larger than 0.801 may reduce
the instabilities at the cost of more expensive Hamiltonian
transitions.

samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples?2,
c('gamma_ncp',
'tau_gamma',
'cut_points'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

One possibility is that the replicated cut points are messing with the hierarchical geometry
of the movie affinities. The movie affinities most susceptible to degenerate behavior in a
non-centered parameterization are those with the most ratings, and those do not exhibit any
obvious geometric pathologies.

idxs <- as.numeric(names(tail (sort(table(data$movie_idxs)), 9)))

names <- sapply(idxs, function(m) pasteO('gammal', m, ']'))
util$plot_div_pairs(names, 'tau_gamma', samples2, diagnostics)

22

IS IS , £ ~
g 0.9 g 0.9 g 0.9
5 07 5 0.7 5 07 .
E 0.5 E 0.5 E 0.5
0.0 1.0 05 15 -05 05
gamma[167] gamma[30] gamma[197
« « «
0.9 0.9 0.9
S 07 S 07 S 07
E 0.5 E 0.5 E 0.5
05 15 0.0 1.0 00 10
gamma[33] gamma[6] gamma[121
« « «
£ £ £
0.9 0.9 0.9
S 07 S 07 S 07
E 0.5 E 0.5 E 0.5
-0.4 0.4 00 10 05 15
gamma[162] gammal[97] gamma[11i

At this point we could spend some time investigating for any degenerate behavior between
the cut points that could be causing problems, or even between some cut points and some
movie affinities. Given the small number of divergences, however, let’s just run again with a
less aggressive step size adaptation and cope with the increased computational cost. We can
always come back to this investigation later if this ends up being our final model.

fit <- stan(file="stan_programs/model2.stan",
data=data, seed=8438338,

warmup=1000, iter=2024, refresh=0,
control=list('adapt_delta'=0.9))

Fortunately that seems to have done the trick and now our diagnostics are squeaky clean.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

23

samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples?2,
c('gamma_ncp',
'tau_gamma',
'cut_points'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Has our retrodictive performance improved?

Interestingly the behavior of the aggregate ratings isn’t quite as consistent between the ob-
served data and posterior predictions as it was before. That said the increased retrodictive
tension isn’t necessarily large enough to be a concern yet.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples2, 'rating pred', -0.5, 6.5, 1,
baseline_values=data$ratings,
xlab="All Ratings")

|—
—

600 —
%
S5 400
O

S—
200 —
0 | | | | | | |

All Ratings

24

More importantly the retrodictive performance for the customers that we’ve spot checked is
much better.

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (¢ in c(7, 23, 40, 70, 77, 100)) {
names <- sapply(which(data$customer_idxs == c),
function(n) pasteO('rating pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples2, names)

customer_ratings <- data$ratings[data$customer_idxs == cl
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
0.8, 6.5, i,

baseline_values=customer_ratings,
xlab="Ratings",
main=paste('Customer', c))

}
Customer 7 Customer 23 Customer 40
25 50 -
M 20 | |
20 — 40 4
15
£ 154 2 304 £
3 3 3 104
O 10 O 20 4 @]
544 10 5
0 77 (O (O
0246 02 46 02 46
Ratings Ratings Ratings
Customer 70 Customer 77 Customer 10(
20 — | | 12 —
10
o 17 9 9 g
o c c
3 10 3 2 6
O O O
4
5_
2
(O 0
02 46 02 46 02 46
Ratings Ratings Ratings

This improvement in the customer-wise behaviors hasn’t come at any cost to the movie-wise
retrodictive performance, at least for this limited spot check.

25

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {
names <- sapply(which(data$movie_idxs == m),
function(n) pasteO('rating_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples2, names)

movie_ratings <- data$ratings[data$movie_idxs == m]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,

baseline_values=movie_ratings,
xlab="Ratings",
main=paste('Movie', m))

}
Movie 33 6 = Movie 53 8 - Movie 61
5_
6_
2 2 47 2
c c c I
2 el @ 4
] @]]
2_
| 2_
4 ¥
(e (e
0246 0246 0246
Ratings Ratings Ratings
Movie 80 Movie 117 Movie 180
10
5_
25 - l
4 - 8 7
20
2 2 2 4 I
S 37 l S 154 § g
o o o
S 5, I S o S 4 I
14 5 2 .
(e (e 0 -
0246 0246 0246
Ratings Ratings Ratings

Do the histograms of stratified summary statistics tell a similar story? The retrodictive ten-
sion in the customer-wise means and variances has decreased, although some remains in the
variances.

26

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples2, 'mean_rating_customer_pred',
0, 6, 0.5,
baseline_values=mean_rating_customer,
xlab="Customer-wise Average Ratings")

util$plot_hist_quantiles(samples2, 'mean_rating movie_pred',
0, 6, 0.6,
baseline_values=mean_rating movie,
xlab="Movie-wise Average Ratings")

util$plot_hist_quantiles(samples2, 'var_rating_customer_pred',
0, 7, 0.5,
baseline_values=var_rating_customer,
xlab="Customer-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 390 predictive values (0.1%) fell above the binning.

util$plot_hist_quantiles(samples2, 'var_rating_movie_pred',
0, 7, 0.5,
baseline_values=var_rating movie,
xlab="Movie-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2586 predictive values (0.3)%) fell above the binning.

27

80 —
(2] (2]
1= £ 60
3 3 40
@) O
204 -
0 —
0 2 4 &6
2] (2]
€ IS
> >
@) o
@) O
0 2 4 6 0 2 4 6
Customer-wise Rating Va Movie-wise Rating Varia

Moreover the retrodictive tension in the collection of selected movie covariances remains.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

filtered_samples <-
util$filter_expectands(samples2,
covar_rating movie_filt_names)

util$plot_hist_quantiles(filtered_samples, 'covar_rating movie_pred',
-4.25, 4.25, 0.25,
baseline_values=covar_rating movie_filt,
xlab="Filtered Movie-wise Rating Covariances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 363 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 280 predictive values (0.0%) fell above the binning.

28

800 —

600 —

400 —

Counts

200

Filtered Movie-wise Rating Covarianc

If we were content with this mild retrodictive tensions then we would move on to exploring
the posterior inferences themselves. For example we could visualize the marginal posterior
inferences for the cut points of each customer.

par (mfrow=c(4, 1), mar=c(5, 5, 1, 1))

for (k in 1:4) {
names <- sapply(l:data$N_customers,
function(r) pasteO('cut_points[', r, ',', k, '1"))
util$plot_disc_pushforward_quantiles(samples2, names,
x1lab="Customer",
display_ylim=c(-6, 6),
ylab=pasteO('cut_point[', k, ']'))

29

6
g aw-s\-._.ﬁ-wfhm'ﬂm'd—
I [[[I

cut_point[’

20 40 60 80 100
Customer
E 6
8_| (6) a-uv_s-h.s:“w‘—_mﬁ—‘-mv
= 7 T T T T T
>
© 20 40 60 80 100
Customer
E 6
8_ 0 %\ﬁ“ﬁ*’f—.ﬁ%ﬁ.m-h“wﬁm.‘
= - T T T T T
© 20 40 60 80 100
Customer
§_ 8 3—_——.J-_,.,v_.-'..'_-lp.q_._'.-._—-ﬂl—‘.l—_qm_—\._-%'-ﬂl_.:l-q_
= 6 T T T T T
© 20 40 60 80 100
Customer

The component cut points are a bit more interpretable when visualized together, especially
when comparing customers. For example to compare Customer 23 and Customer 70 we might
overlay the marginal posterior visualizations of the four component cut points of each customer
in adjacent plots

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

cols <- c(util$c_mid, util$c_mid_highlight,
util$c_dark, util$c_dark_highlight)

6 = 28
k <-1
name <-pasteO('cut_points[', c, ',', k, ']")

util$plot_expectand_pushforward(samples2[[name]],
50, flim=c(-9, 9), ylim=c(0, 2),
col=cols[k], display_name='Cut Points',
main=paste('Customer', c))

for (k in 2:4) {

30

name <-pasteO('cut_points[', ¢, ',', k, '1")
util$plot_expectand_pushforward(samples2[[name]],
50, flim=c(-9, 9),
col=cols[k], border="#BBBBBBS8S",
add=TRUE)

text(0, 1.65, "cut_points[1]", col=util$c_mid)

text(2, 1.4, "cut_points[2]", col=util$c_mid_highlight)
text(4, 1, "cut_points[3]", col=util$c_dark)

text(6, 0.5, "cut_points[4]", col=util$c_dark_highlight)

c <- 70

k <-1
name <-pasteO('cut_points[', ¢, ',', k, ']")
util$plot_expectand_pushforward(samples2[[name]],

50, flim=c(-9, 9), ylim=c(0, 2),

col=cols[k], display_name='Cut Points'

main=paste('Customer', c))

Warning in util$plot_expectand_pushforward(samples2[[name]], 50, flim
12 values (0.3%) fell below the histogram binning.

Warning in util$plot_expectand_pushforward(samples2[[name]], 50, flim
0 values (0.0%) fell above the histogram binning.

for (k in 2:4) {
name <-pasteO('cut_points[', ¢, ',', k, ']1")
util$plot_expectand_pushforward(samples2[[name]],
50, flim=c(-9, 9),
col=cols[k], border="#BBBBBBS8S",
add=TRUE)

text(-5.5, 0.35, "cut_points[1]", col=util$c_mid)

text (-3, 0.75, "cut_points[2]", col=util$c_mid_highlight)
text(-2, 1.0, "cut_points[3]", col=util$c_dark)

text(1.0, 1.25, "cut_points[4]", col=util$c_dark_highlight)

31

b

c(-9,

c(-9,

Customer 23

Estimated Bin
Probabilities / Bin W

Cut Points

Customer 70

?ints[4]

Estimated Bin
Probabilities / Bin W

Cut Points

This allow us to see that Customer 23 is pretty stingy; a movie affinity needs to be pretty large
in order for the probability of a large rating to be non-negligible. On the other hand Customer
70 is much more generous; they are likely to give even a mediocre movie a high rating.

At the same time we can investigate the inferred affinities for each movie.
par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples2[['tau_gamma']],
25, flim=c(0, 1),
display_name='tau_gamma')

names <- sapply(1l:data$N_movies,
function(m) pasteO('gammal', m, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Movie",
ylab="Affinity")

32

Estimated Bin
Probabilities / Bin W

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

tau_gamma

2 t
> 1 Ji"v*fi“ TR WIRTO AR
£ 0 ,ny.wﬁmwﬁﬁ a‘”m?/;mm*?? Wi
-2 T I I I
50 100 150 20C
Movie

While there is a lot of uncertainty, not surprising given the limited data, we can definitely see
some trends. For example the concentration of the tau_gamma marginal posterior distribution
away from zero indicates substantial variation in the movie affinities. Moreover despite the
uncertainties we can clearly differentiate the best movies from the worst movies. We’ll do even
more with these movie affinity inferences in the next section.

5 Hierarchical Customer Model

At this point we need to address a stark asymmetry in the last model. Although we’re ac-
counting for heterogeneity in both customer and movie behaviors, we’re modeling only the
latter hierarchically. We don’t have any domain expertise that obstructs the exchangeability
of the customers so why don’t we model the individual cut points hierarchically as well? All
we need is an appropriate multivariate population model.

Conveniently the induced Dirichlet prior naturally composes with a hyper Dirichlet popu-
lation model that I discussed in my die fairness case study. This makes for a natural cut
point population model that pools each customer’s ratings to a common distribution of rating
probabilities.

That said this is not the most general hierarchical model that we might consider. This model
assumes that the heterogeneity in the cut points is independent of the heterogeneity in the

33

https://betanalpha.github.io/assets/chapters_html/die_fairness.html

movie affinities and more generally those heterogeneities could be coupled together. That said
I think that it is more than reasonable to assume that how each customer translates their
preferences into a movie rating is independent from those preferences themselves.

fit <- stan(file="stan_programs/model3.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

The hierarchical model over the cut points has already proved useful — the mild computational
issues that we had considered in the last model fit have vanished.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples3 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples3,
c('gamma_ncp',
'tau_gamma',
'cut_points',
'mu_q', 'tau_q'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Overall the retrodictive performance is a little bit better than in the previous model. In par-
ticular the agreements in the aggregate ratings histogram and stratified covariances histogram
have improved slightly. On the other hand the retrodictive tension in the stratified variances
stubbornly persists. We shouldn’t expect too much performance, however, given that the hier-
archical structure doesn’t add any flexibility to the customer behaviors beyond what we had
already included.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samples3, 'rating pred', -0.5, 6.5, 1,

baseline_values=data$ratings,
xlab="All Ratings")

34

800 —

600 —

400 —

Counts

200

All Ratings

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (¢ in c(7, 23, 40, 70, 77, 100)) {
names <- sapply(which(data$customer_idxs == c),
function(n) pasteO('rating_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples3, names)

customer_ratings <- data$ratings[data$customer_idxs == c]
util$plot_hist_quantiles(filtered_samples, 'rating pred',
-0.5, 6.5, 1,

baseline_values=customer_ratings,
xlab="Ratings",
main=paste('Customer', c))

35

Customer 7 Customer 23 Customer 40

20
20 40
15
[%] — 0 - 0
§ 15 § 30 §
S 10 S 20 3 197
5 - -] & 5
_-,l !
0 - 0 - T 0 -
0246 0246 0246
Ratings Ratings Ratings
20 _Customer 70 Customer 77 12 Customer 10(
35
_ 10
15 30 | |
o) I 25 - o) 8
5 S5 20 5 I
3 10+ 3 3 6
o O 154 S I
5 10 —
| |
5 27
0 - 0 - 0 -
0246 0246 0246
Ratings Ratings Ratings

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {
names <- sapply(which(data$movie_idxs == m),
function(n) pasteO('rating pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples3, names)

movie_ratings <- data$ratings[data$movie_idxs == m]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,

baseline_values=movie_ratings,
xlab="Ratings",
main=paste('Movie', m))

36

Movie 33 _ Movie 53 Movie 61

7
6 - . 87
5 -]
[%] [%] [%2] 6
< < 4 <
8 8 2 ad 2
O o 34 O
2 4 I 5
] !
0 - 0 -
0246 0246 0246
Ratings Ratings Ratings
6 — Movie 80 30 o Movie 117 10 = Movie 180
5 254 f 8
[%] 4 [%] 20 %] I
£ £ E 61
= s- s 154 :
o o o 4 I
2—1 l 10
1 5 - 2 o
0 - 0 - 0 -
0246 0246 0246
Ratings Ratings Ratings

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples3, 'mean_rating_customer_pred',
0, 6, 0.5,
baseline_values=mean_rating_customer,
xlab="Customer-wise Average Ratings")

util$plot_hist_quantiles(samples3, 'mean_rating movie_pred',
0, 6, 0.6,
baseline_values=mean_rating_movie,
xlab="Movie-wise Average Ratings")

util$plot_hist_quantiles(samples3, 'var_rating_customer_pred',
0, 7, 0.5,
baseline_values=var_rating_customer,
xlab="Customer-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 234 predictive values (0.1%) fell above the binning.

37

util$plot_hist_quantiles(samples3, 'var_rating_movie_pred',
0, 7, 0.5,
baseline_values=var_rating movie,
xlab="Movie-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2222 predictive values (0.3%) fell above the binning.

40 7 & 80 A
£ 30 | 2 60
§ 20 § 40 4
10 20 &
0 B 0
0 2 4 6 0 2 4 6
Customer—-wise Average | Movie-wise Average Ra
60 4 =
@ @ 50—
=5
Q © 204 L
104 °
[o e
0 2 4 6 0 2 4 6

Customer—-wise Rating Va Movie-wise Rating Varia

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

filtered_samples <-
util$filter_expectands(samples3,
covar_rating movie_filt_names)
util$plot_hist_quantiles(filtered_samples, 'covar_rating movie_pred',
-4.25, 4.25, 0.25,
baseline_values=covar_rating movie_filt,
xlab="Filtered Movie-wise Rating Covariances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 286 predictive values (0.0%) fell below the binning.

38

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 410 predictive values (0.0%) fell above the binning.

800 —

600 —

400 —

Counts

200

Filtered Movie-wise Rating Covarianc

If we were satisfied with this retrodictive performance then there are already many ways that
we can explore and utilize these inferences.

With the new hierarchical structure we can investigate what we learned about not only each
individual customer but also the population of customers. The marginal posterior distribution
for tau_q suggests a small but non-negligible heterogeneity in the cut points. Moreover the
inferences for the baseline probabilities mu_q suggest that customers are relatively optimistic,
with four star ratings being more probable than tree star ratings for a neutral movie with zero
affinity.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['tau_q'l],
25, flim=c(0, 0.3),
display_name='tau_q')

names <- sapply(1:5, function(k) pasteO('mu_ql', k, ']"))
util$plot_disc_pushforward_quantiles(samples3, names,

xlab="Rating",

ylab="Baseline Rating Probability")

39

Estimated Bin
Probabilities / Bin W

I I I I I I
0.00 0.05 0.10 0.15 0.20 0.25 0.3C

tau_q
S
£ 0.3
s 0.2
% 0.1 .
£ 0.0 == I I I
(D)
2 1 2 3 4 5
m
Rating

The regularizing influence of the hierarchical model is strongest for those customers with the
fewest ratings. For example Customer 42 has only three observed ratings, and the hierarchical
inferences for their cut points shift and narrow pretty substantially relative to the inferences
from the previous model.

c <- 42
table (data$customer_idxs) [c]

42
3

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

lab2_xs <- c(1.5, 2, -4, -3)
lab2_ys <- c(0.15, 0.25, 0.35, 0.35)

lab3_xs <- c(-6, -5, 3, 3.5)
lab3_ys <- c(0.25, 0.4, 0.5, 0.6)
for (k in 1:4) {
name <- pasteO('cut_points[', c, ',', k, ']")

40

util$plot_expectand_pushforward(samples2[[name]],

50, flim=c(-10, 5), ylim=c(0, 1.0),

col=util$c_light,
display_name='Cut Points',
main=paste('Customer', c))

name <- pasteO('cut_points[', ¢, ',', k, ']")
util$plot_expectand_pushforward(samples3[[name]],
50, flim=c(-10, 5),

col=util$c_dark, border="#BBBBBB83",

add=TRUE)

text (lab2_xs[k], lab2_ys[k], "Model 2", col=util$c_light)
text (lab3_xs[k], lab3_ys[k], "Model 3", col=util$c_dark)

Warning in util$plot_expectand_pushforward(samples2[[name]],

: 3 values (0.1%) fell below the histogram binning.

Warning in util$plot_expectand_pushforward(samples2[[name]],
: 0 values (0.0%) fell above the histogram binning.

Warning in util$plot_expectand_pushforward(samples3[[name]],
1 value (0.0%) fell below the histogram binning.

Warning in util$plot_expectand_pushforward(samples3[[name]],
: 0 value (0.0%) fell above the histogram binning.

41

50,

50,

50,

50,

flim

flim

flim

flim

c(-10,

c(-10,

c(-10,

c(-10,

Customer 42 Customer 42

Estimated Bin
Probabilities / Bin Widi
Estimated Bin
Probabilities / Bin Widi

Model
ModetB&)
r T T 1T T
-10 -4 0 4 -10 -4 0 4
Cut Points Cut Points
S Customer 42 S Customer 42
P P
m S m £
- @ - @ d
O ~ O ~ oqge
T D odel T D
E S E 2 '
U8 08
QO QO
e T T T 1T 11 e
o o
-10 -4 0 4 -10 -4 0 4
Cut Points Cut Points

We can also see the impact of the hierarchical model if we examine the cut point inferences for
the two models across all customers. The more uncertain customer inferences in the previous
model, especially for the first and last cut points, are pulled towards the other customer
inferences.

par (mfrow=c(4, 1), mar=c(5, 5, 1, 1))

for (k in 1:4) {
names <- sapply(l:data$N_customers,
function(c) pasteO('cut_points[', c, ',', k, '1"))

yname <- pasteO('cut_points[', k, ']"')

util$plot_disc_pushforward_quantiles(samples3, names,
xlab="customer",
display_ylim=c(-6, 6),
ylab=yname)

42

6
-6 aw’\rf.-h‘MM'm‘-ﬂ-
I [

cut_points|
o

20 40 60 80 100

customer

@

E 6

8_| g a-u——m.w-—..mw

- - [[[[[

5

© 20 40 60 80 100
customer

@

< 6

‘S 0 aq.n.mﬂl"w—lw\a—fw

o

- 6 T T T T T

5

© 20 40 60 80 100
customer

i

g 8 a—:—.wo"'-'.“'—”w_m-\oﬁ P

o

=7 T T T T T

5

© 20 40 60 80 100
customer

The hierarchical influence, however, doesn’t change the qualitative details. For example Cus-
tomer 23 is still stingy with their ratings while Customer 70 is still generous.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

cols <- c(util$c_mid, util$c_mid_highlight,
util$c_dark, util$c_dark_highlight)

c <- 23
k <-1
name <-pasteO('cut_points[', c, ',', k, ']")

util$plot_expectand_pushforward(samples3[[name]],
50, flim=c(-9, 9), ylim=c(0, 2),
col=cols[k], display_name='Cut Points',
main=paste('Customer', c))

for (k in 2:4) {
name <-pasteO('cut_points[', ¢, ',', k, ']")
util$plot_expectand_pushforward(samples3[[name]],

43

50, flim=c(-9, 9),
col=cols[k], border="#BBBBBB88",
add=TRUE)

text (0, 1.65, "cut_points[1]", col=util$c_mid)

text(2, 1.45, "cut_points[2]", col=util$c_mid_highlight)
text(4, 1, "cut_points[3]", col=util$c_dark)

text(6, 0.5, "cut_points[4]", col=util$c_dark_highlight)

c <- 70

k <-1
name <-pasteO('cut_points[', ¢, ',', k, '1")
util$plot_expectand_pushforward(samples3[[name]],

50, flim=c(-9, 9), ylim=c(0, 2),

col=cols[k], display_name='Cut Points'

main=paste('Customer', c))

Warning in util$plot_expectand_pushforward(samples3[[name]], 50, flim
10 values (0.2%) fell below the histogram binning.

Warning in util$plot_expectand_pushforward(samples3[[name]], 50, flim
0 values (0.0%) fell above the histogram binning.

for (k in 2:4) {
name <-pasteO('cut_points[', ¢, ',', k, '1")
util$plot_expectand_pushforward(samples3[[name]],
50, flim=c(-9, 9),
col=cols[k], border="#BBBBBB88",
add=TRUE)

text(-5.5, 0.4, "cut_points[1]", col=util$c_mid)

text (-3, 0.85, "cut_points[2]", col=util$c_mid_highlight)
text(-2, 1.15, "cut_points[3]", col=util$c_dark)

text(1.0, 1.35, "cut_points[4]", col=util$c_dark_highlight)

44

b

c(-9,

c(-9,

c= Customer 23
m .£ .
o e Cut_BH{n
IS points[3]
== i
= = points[4
n 9
W | | |
o
& -5 0 5
Cut Points
c= Customer 70
m .£
e
g5
<
ES
08
o]
e
a

Cut Points

Of course we can still investigate the behavior of individual movies and the hierarchical popu-
lation of movies. The hierarchical regularization of the cut points allows the observed ratings
to slightly better inform the movie affinities.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['tau_gamma']l],
50, flim=c(0, 1),
display_name='tau_gamma')

names <- sapply(l:data$N_movies,
function(m) pasteO('gammal', m, ']'))
util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Movie",
ylab="Affinity")

45

Estimated Bin
Probabilities / Bin W

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

tau_gamma
15 I t
2 05 #n;‘*;ﬂ*u*h bkt | A ﬁ*%’{
£ -05 *',II' ‘IIIIIII*:*IIIIIFWI'IIWM{%IVI
-1.5 !
[I I I
50 100 150 20C
Movie

Now let’s go one step further than we did in the previous section and use these movie inferences
to rank the movies by their expected affinities. This is just one heuristic for ranking items
based on their inferred qualities, but one that has the advantage of being relatively fast to
compute.

expected_affinity <- function(m) {
util$ensemble_mcmc_est (samples3[[paste0('gammal', m, ']J')]1]1) [1]
}

expected_affinities <- sapply(l:data$N_movies,
function(m) expected_affinity(m))

post_mean_ordering <- sort(expected_affinities, index.return=TRUE)$ix

We can then use this ranking to select out the five worst movies.

print(data.frame("Rank"=200:196,
"Movie'"=head(post_mean_ordering, 5)),
row.names=FALSE)

Rank Movie

46

200 31

199 159
198 13
197 40
196 175

To be a bit less pessimistic we could also consider the five best movies.
print(data.frame("Rank"=5:1,

"Movie"=tail (post_mean_ordering, 5)),
row.names=FALSE)

Rank Movie

5 193
4 33
3 117
2 44
1 180

We have a variety of ways to make inferential comparisons between two movies at a time. For
example we could just overlay the marginal posterior distributions for each movie affinity.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

ml <- head(post_mean_ordering, 1)
name <-pasteO('gammal[', m1l, ']")
util$plot_expectand_pushforward(samples3[[namel],
50, flim=c(-3, 3),
ylim=c(0, 1.3),
col=util$c_mid,
display_name='Affinity')
text(-1.25, 1.2, paste('Movie', ml), col=util$c_mid)

m2 <- tail(post_mean_ordering, 1)

name <-pasteO('gammal[', m2, ']"')

util$plot_expectand_pushforward(samples3[[name]l],
50, flim=c(-3, 3),
col=util$c_dark,
border="#BBBBBB88",
add=TRUE)

text(1.25, 1.2, paste('Movie', m2), col=util$c_dark)

47

Movie 31 Movie 180

Estimated Bin
Probabilities / Bin Width

Affinity

Even better we can directly compute the probability that one movie affinity is larger than the
other. Here there is little ambiguity whether or not the top ranked movie is actually better
than the worst ranked movie.

var_repl <- list('gl'
Ig2l

pasteO('gammal', ml,']"),
pasteO('gammal', m2,']"'))

p_est <-
util$implicit_subset_prob(samples3,
function(gl, g2) gl < g2,
var_repl)

format_string <- pasteO("Posterior probability that movie %i affinity ",
"> movie %i affinity = %.3f +/- %.3f.")
cat (sprintf (format_string, ml, m2, p_est[1], 2 * p_est[2]))

Posterior probability that movie 31 affinity > movie 180 affinity = 1.000 +/- 0.000.

48

6 Hierarchical Customer Model With Heterogeneous Affinities

At this point there are two main limitations with the last model. Firstly there is the mild
retrodictive tension in a few of the summary statistics. Secondly it makes the strong assump-
tion that once the different interpretations of ratings are taken into account all customers have
the same opinions about each movie.

This for example prevents us from making personalized recommendations to each customer.
Incorporating individual tastes into the model would inform much more nuanced inferences
and predictions. It could even resolve some of the retrodictive tension.

The immediate challenge with trying to infer personal movie preferences, however, is that

customers rate only a very small proportion of the available movies.

xs <- seq(1, data$N_movies, 1)
ys <- seq(1l, data$N_customers, 1)
zs <- matrix(0, nrow=data$N_movies, ncol=data$N_customers)

for (n in 1:data$N_ratings) {
zs[data$movie_idxs[n], data$customer_idxs[n]] <- 1
+

par (mfrow=c(1, 1), mar = c(5, 5, 1, 1))

image(xs, ys, zs, col=c("white", util$c_dark_teal),
xlab="Movie", ylab="customer")

49

100 =0ty T
T by e
li.” '|': Welogh e e !. - '.'i' ':-I. sl
80 7., ML ds e s...li-;f g
:' ;!'1 i ﬁ:,,i" : ..-, £l Far '.r':ﬂ ‘.-, ‘i
- N
g 60 _'JI | "'LH: pll;p.h :.zdgu-|| I .-'||| }#ﬁl!l"l!l
5 (RSN S RN HENS '.:
% '1'-"'1 |r.!.:.|“I.n'.'..., '.-r|'|||'l| ro ".||-|'||
o 40 =4 "|_||' A IR doat |1I| |‘u| |"
' .I.:' 'I..I.' .'p||.|I e ll.'l||'l|' A1 Ih:." e
R ' il .1:
A !ﬁ.ﬂﬁi'l
20 ey, e B0 fr
Loy -’LE-f.::“ -". i .|"*.: -;-' -.i.- : *."'.- '
I R A (R AR A
| | |
50 100 150 20C
Movie

In the machine learning literature the problem of filling in unobserved pairs, like customer-
movie ratings in this application, is often known as “matrix completion” in analogy to filling
in the missing cells of this visualization.

Because most of the ratings are unobserved the only way to inform individual customer pref-
erences for each movie is to pool correlations in each movie affinities across customers. For
example we might model each customers’ movie affinities as common baseline affinities plus
individual deviations,
Yo =Yy T Oc-
We can then pool these individual deviations together with a multivariate normal population
model,
p(d,.) = multi-normal(0, X)

with

_ T .
E—T,Y (I)v Ty

Whatever we learn about the population baseline v, the population scales 7., and the popu-
lation correlations @ fill in whatever elements of any affinity vector v, that might be unob-
served.

Because the movies are still exchangeable we can model the baseline movie affinities hierarchi-
cally as well,

p(Yo,mm) = normal(0, 7,).

50

We’re now modeling the cut points, the baseline movie affinities, and the individual customer
affinities hierarchically all at the same time. Pretty neat.

Given the sparsity of observed ratings we’ll implement the normal and multivariate normal
hierarchical models with non-centered parameterizations.

fit <- stan(file="stan_programs/model4.stan",
data=data, seed=8438338, init=0,
warmup=1000, iter=2024, refresh=0)

People complain about the annoyance of diagnostic warnings but how bad can they be if we
don’t see any for this complex model with 40,706 degrees of freedom? Turns out Hamiltonian
Monte Carlo is pretty good!

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples4 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples4,
c('gammaO_ncp',
'tau_gammaO',
'delta_gamma_ncp',
'tau_delta_gamma',
'L_delta_gamma',
'cut_points',
'mu_q', 'tau_q'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples,
exclude zvar=TRUE)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Unfortunately all of this added sophisticated doesn’t actually seem to improve the retrodic-
tive performance much. Even the retrodictive tension in the covariances, which should be
particularly sensitive to added flexibility in the new model, is similar to what we saw with
the previous model. One possibility is that the multivariate normal population model is isn’t
sufficiently heavy-tailed to accommodate the more extreme tastes of the customers.

51

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samples4, 'rating_pred', -0.5, 6.5, 1,

baseline_values=data$ratings,
xlab="All Ratings")

800

[]
E—

600 —
0 T
=
(@) 400]
O

200 —

0 I I I I I I I

All Ratings

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (c in c(7, 23, 40, 70, 77, 100)) {
names <- sapply(which(data$customer_idxs == c),
function(n) pasteO('rating pred[', n, ']1'))
filtered_samples <- util$filter_expectands(samples4, names)

customer_ratings <- data$ratings[data$customer_idxs == c]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,

baseline_values=customer_ratings,
xlab="Ratings",
main=paste('Customer', c))

52

Customer 7 Customer 23 Customer 40

20
20 40
15
[%] — 0 - 0
e P e ¥ E
S 10 S 20 g 7
- - L3 5
594 - 10 |
0 ' 0 - T 0 -
0246 0246 0246
Ratings Ratings Ratings
20 _Customer 70 Customer 77 Customer 10(
35 10
15 30
2 g 257 g 87 |
c c _ c
g 104 g 20 g 0
o O 15 o,
5 10 4 & i
545 T 27
0 - 0 - 0 -
0246 0246 0246
Ratings Ratings Ratings

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (m in c(33, 53, 61, 80, 117, 180)) {
names <- sapply(which(data$movie_idxs == m),
function(n) pasteO('rating pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples4, names)

movie_ratings <- data$ratings[data$movie_idxs == m]
util$plot_hist_quantiles(filtered_samples, 'rating_pred',
-0.5, 6.5, 1,

baseline_values=movie_ratings,
xlab="Ratings",
main=paste('Movie', m))

53

Movie 33 Movie 53 Movie 61

6 8
> 6
%] [%] [%] N
< < 4 <
2 3 5 2 4 |
o o l. o
il
2_
'] N
0 - 0 -
0246 0246 0246
Ratings Ratings Ratings
6 - Movie 80 Movie 117 Movie 180
5 25 | 10 H
| | 8
a 47 g 207 @ o
c c = 6_
2 ‘ 10 4 l
1+ I 54 L4 24 .
0 - 0 - 0 -
0246 0246 0246
Ratings Ratings Ratings

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples4, 'mean_rating customer_pred',
0, 6, 0.5,
baseline_values=mean_rating_customer,
xlab="Customer-wise Average Ratings")

util$plot_hist_quantiles(samples4, 'mean_rating movie_pred',
0, 6, 0.6,
baseline_values=mean_rating_movie,
xlab="Movie-wise Average Ratings")

util$plot_hist_quantiles(samples4, 'var_rating_customer_pred',
0, 7, 0.5,
baseline_values=var_rating_customer,
xlab="Customer-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 283 predictive values (0.1%) fell above the binning.

54

util$plot_hist_quantiles(samples4, 'var_rating_movie_pred',
0, 7, 0.5,
baseline_values=var_rating movie,
xlab="Movie-wise Rating Variances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2337 predictive values (0.3%) fell above the binning.

40 - 80 — =
- |
}’g’ 30 % 60 —
20 -
3 g 40
10 — 20 -
0 B 0
0O 2 4 6 0O 2 4 6
Customer—-wise Average | Movie-wise Average Ra
60
" w 50
= 2 40
3 3 30
o O 20
10
T 0
0 2 4 6 0 2 4 6
Customer—-wise Rating Va Movie-wise Rating Varia

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

filtered_samples <-
util$filter_expectands(samples4,
covar_rating movie_filt_names)

util$plot_hist_quantiles(filtered_samples, 'covar_rating movie_pred',
-4.25, 4.25, 0.25,
baseline_values=covar_rating movie_filt,
xlab="Filtered Movie-wise Rating Covariances")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 124 predictive values (0.0%) fell below the binning.

55

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 90 predictive values (0.0%) fell above the binning.

800 —

600 —

400 —

Counts

200 —

Filtered Movie—wise Rating Covarianc

The lack of any substantial improvements in the retrodictive performance suggests that we
might not have included enough data to really resolve individual customer preferences quite
yet. We can directly quantify how much we can resolve individual customer preferences by
examining our posterior inferences.

Posterior inferences for the cut point population behaviors are mostly consistent with the
previous model, although the baseline rating probabilities do slightly shift down to be more
centered around 3. This suggest that the previous model may have been contorting itself a bit
to account for the variation in customer tastes.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['tau_q']],
25, flim=c(0, 0.3),
col=util$c_light,
display_name='tau_q')

text(0.05, 10, "Model 2", col=util$c_light)

util$plot_expectand_pushforward(samples4[['tau_q']],
25, flim=c(0, 0.3),

o6

col=util$c_dark,
border="#BBBBBB38",
add=TRUE)

text (0.2, 10, "Model 3", col=util$c_dark)

Model 3

Estimated Bin
Probabilities / Bin Width

I I I I I I
0.00 0.05 0.10 0.15 0.20 0.25 0.3¢

tau_q

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

names <- sapply(1:5, function(k) pasteO('mu_q[', k, ']1'))
util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Rating",
ylab="Baseline Rating Probability",
main="Model 3")

names <- sapply(1:5, function(k) pasteO('mu_q[', k, '1'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Rating",
ylab="Baseline Rating Probability",
main="Model 4")

57

S Model 3
£ 0.3
< 0.2 7
X 0.1 _
g 0.0 - I T | [|
A 1 2 3 4 5
0
Rating
09_ 05 — Model 4
£ 03
c 0.2 -
X 0.1 —
A 1 2 3 4 5
0
Rating

Similarly some of the individual customer cut points change slightly. For example the cut
points for Customer 23 shift a bit towards larger values.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))
c <- 23

lab3_xs <- c(0, -0.5, 0, 1)
lab3_ys <- c(1.75, 0.5, 0.5, 0.25)

lab4_xs <- c(2, 4, 5.5, 8)
lab4_ys <- c(0.5, 0.5, 0.5, 0.25)

for (k in 1:4) {

name <-pasteO('cut_points[', ¢, ',', k, ']")

util$plot_expectand_pushforward(samples3[[namel],
40, flim=c(-2, 10),
col=util$c_light,
display_name=name)

util$plot_expectand_pushforward(samples4[[namel],
40, flim=c(-2, 10),
col=util$c_dark,

58

border="#BBBBBB88" ,
add=TRUE)

text (lab3_xs[k], lab3_ys[k], "Model 3", col=util$c_light)
text (lab4_xs[k], lab4_ys[k], "Model 4", col=util$c_dark)
}

Estimated Bin
Probabilities / Bin Widi

Estimated Bin
Probabilities / Bin Widi

odel 4 odel 4
T 1T 1T 111
-2 2 6 10 -2 2 6 1C
cut_points[23,1] cut_points[23,2]
5 5
csS csS
m .E m .S
- @ - @
£ o Lo
_g 2 odel 4 g 2 odel
g 53
o] o]
<) T T T T 11 <)
a a
-2 2 6 10 -2 2 6 1C
cut_points[23,3] cut_points[23,4]

The baseline movie affinities emulate the universal movie preferences in the previous model,
and indeed inferences for them are similar if slightly more heterogeneous.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['tau_gamma']],
25, flim=c(0, 1.25),
display_name="tau_gamma",
main="Model 3")

names <- sapply(l:data$N_movies,
function(m) pasteO('gammal', m, ']'))
util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Movie",

59

ylab="Affinities",
main="Model 3")

util$plot_expectand_pushforward(samples4[['tau_gammaO']],
25, flim=c(0, 1.25),
display_name="tau_gammaO",
main="Model 4")

names <- sapply(1l:data$N_movies,
function(m) pasteO('gammaO[', m, ']'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Movie",
ylab="Baseline Affinities",
main="Model 4")

Tg Model 3 Model 3
ST 1.5
m .S 10 { t
m n . +
B~ 8 o5 it il
< 3 S 0.0
== g -0.5 It +
08 ~1.077
o -1.5
09_ 1 T 1T 11
0.0 04 08 1.2 50 150
tau_gamma Movie
Model 4 Model 4

Baseline Affinities
[EY
==
43552;

Estimated Bin
Probabilities / Bin Widi

00 04 08 1.2 50 150
tau_gammaO Movie

Now, however, we can investigate the preferences idiosyncratic to each customer. For exam-
ple the individual movie affinity scales quantify how much the customers disagree about a
particular movie.

60

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(1:data$N_movies,
function(m) pasteO('tau_delta_gammal', m, ']'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Movie",
ylab="Affinity Variation Scales")

Affinity Variation Scales

I I I I
50 100 150 20C

Movie

Overall there is a lot of uncertainty, with the inferences for most of the movie affinity scales
concentrating around zero. That said a few stand out. For example the posterior inferences
for 7, 159 are starting to pull away from zero, suggesting that customers tend to disagree with
the quality of this movie more than usual.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

m <- 159

name <- pasteO('tau_delta_gammal', m, ']')

util$plot_expectand_pushforward(samples4[[name]],
25, flim=c(0, 10),
display_name=name)

61

Estimated Bin
Probabilities / Bin Width

I I I I I
0 2 4 6 8 10

tau_delta_gamma[159]

The inferred correlations in the multivariate normal population model allow us to inform
predictions for how a customer would react to unrated movies given the movies they have
rated. While most of the correlations are consistent with zero many are large enough to be
resolved even from this limited data set.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples4, 'Phi', -1, 1, 0.01,
xlab="Movie-wise Affinity Correlations")

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 136930 predictive values (0.1%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 543674 predictive values (0.3%) fell above the binning.

62

7000 — I
6000 —
5000 —

4000 —

Counts

3000 —

(14

2000 —

1000 N

I I I I
-1.0 -0.5 0.0 0.5 1.C

oot * ¢

Movie-wise Affinity Correlations

It’s more practical, not to mention more interpretable, to investigate the consequence of these
correlations. In particular we can look at the movie affinities for each customer by adding

together the common baselines with their individual preferences. Here we’ll consider Customer
23.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))
c <- 23

names <- sapply(l:data$N_movies,
function(m) pasteO('gammaO[', m, ']'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Movie",
ylab="Baseline Affinity",
main="Baseline")

names <- sapply(l:data$N_movies,
function(m) pasteO('delta_gammal', c, ',', m, ']'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Movie",
ylab="Change in Affinity",
main=pasteO('Customer', c))

63

g Baseline
£ 2
=
< 1 il foe it b g
2 o WA M
i
g 2 | | | |
50 100 150 20C
Movie
= Customer23
e 4
c (2)
"g’a -2
< -4
. | | | |
50 100 150 20C
Movie

expectands <- sapply(l:data$N_movies,
function(m)
local({ idx = m; function(xl, x2)
x1[idx] + x2[idx] }))
names (expectands) <- sapply(l:data$N_movies,
function (m)
pasteO('gammal', c, ',', m, ']1'))

var_repl <- list('xl'=array(sapply(l:data$N_movies,
function (m)
paste0('gammalO[', m, ']1'))),
'x2'=array(sapply(l:data$N_movies,
function(m)
pasteO('delta_gammal', c,
L',om, 1))

affinity_samples <-
util$eval_expectand_pushforwards(samples4,
expectands,
var_repl)

64

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(1:data$N_movies,
function(m) pasteO('gammal', ¢, ',', m, ']"))

util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab="Movie",
ylab="Affinity",
main=paste('Customer', c))

Customer 23

I I I I
50 100 150 20C

Movie

Even better we can separately visualize the movie affinities that are directly informed by
observed ratings and those informed by only the multivariate normal hierarchical model. Note
that the affinities for the movies that Customer 23 did not rate are not only much more
uncertain but also much more uniform.

rated_movie_idxs <- data$movie_idxs[data$customer_idxs == c]
unrated _movie_idxs <- setdiff(1:data$N_movies, rated_movie_idxs)

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_movies,

65

function(m) pasteO('gammal', c, ',', m, ']'))
util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab="Rated Movie",
ylab="Customer Affinity",
main=pasteO('Customer', c))
for (m in unrated _movie_idxs) {
polygon(c(m - 0.5, m + 0.5, m + 0.5, m- 0.5),
c(-4.75, -4.75, 4.75, 4.75), col="white", border=NA)

util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab="Unrated Movie",
ylab="Customer Affinity",
main=pasteO('Customer', c))
for (m in rated_movie_idxs) {
polygon(c(m - 0.5, m + 0.5, m + 0.5, m- 0.5),
c(-4.75, -4.75, 4.75, 4.75), col="white", border=NA)

}
‘é Customer23
E 4
; % f'ji !I:%' .'& i? '!!I'I i?'! 'F l!'! W P IF|| i
e 5 ﬁ Ik LU AL A
g -4
n
@)
50 100 150 20C
Rated Movie
g Customer23
E 4
=2 bt g
2 9 HRRIL o il Al
g -4
n
@)

50 100 150 20C

Unrated Movie

The immediate benefit of modeling individual preferences is that we can now make movie
recommendations bespoke to Customer 23.

66

expected_affinity <- function(m) {
name <- pasteO('gammal', c, ',', m, ']")
util$ensemble mcmc_est(affinity_samples[[name]]) [1]

}

expected_affinities <- sapply(l:data$N_movies,
function(m) expected_affinity(m))

post_mean_ordering <- sort(expected_affinities, index.return=TRUE)$ix

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(post_mean_ordering,
function(m) pasteO('gammal', c, ',', m, ']"))

xname <- "Movies Ordered by Expected Affinity"

util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab=xname,
ylab="Affinity")

I I I I
50 100 150 20C

Movies Ordered by Expected Affinity

From this we can infer what movies we think Customer 23 will like the least.

67

print(data.frame("Rank"=200:196,
"Movie"=head(post_mean_ordering, 5)),
row.names=FALSE)

Rank Movie

200 40
199 13
198 78
197 55
196 183

As well as what movies we think they will like the most.
print(data.frame("Rank"=5:1,

"Movie'"=tail (post_mean_ordering, 5)),
row.names=FALSE)

Rank Movie

5 167
4 61
3 156
2 23
1 97

Of course there’s not much utility in recommending a customer a movie that they’ve already
seen. A much more useful recommendation is for movies that they haven’t yet seen but might
enjoy.

Here let’s assume that a movie has been unrated by a customer only if it the customer has
not yet seen it. Consequently the recommendation task comes down to inferring the unrated
movies with the highest affinities for Customer 23.

expected_affinities <- sapply(unrated_movie_idxs,
function(m) expected_affinity(m))

post_mean_ordering <- sort(expected_affinities, index.return=TRUE)$ix

We can finally present a list of the top movies to recommend to Customer 23.

68

print(data.frame("Rank"=10:1,
"Movie"=tail (unrated_movie_idxs[post_mean_orderingl, 10)),
row.names=FALSE)

Rank Movie

10 95
186
155
15
107
161
43
86
87
193

=N Wd 0oy N 0 ©

All of this said we should have only mild confidence in these recommendations given the large
uncertainties.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(unrated_movie_idxs[post_mean_ordering],
function(m) pasteO('gammal', c, ',', m, ']'))

xname <- "Unrated Movies Ordered by Expected Affinity"

util$plot_disc_pushforward_quantiles(affinity_samples, names,
xlab=xname,
ylab="Affinity")

69

Affinity

I I I I I
20 40 60 80 100

Unrated Movies Ordered by Expected Affir

One subtlety with recommendations is that in most applications we cannot evaluate their
performance directly. For example absent any additional interrogation of the Customer 23 the
only indication of how much they agree with one our recommendations is how well they rate
the movie in the future.

Fortunately we can use our inferences to predict not only the latent affinity of these movie
recommendations but also how we think Customer 23 would rate them. This would allow us
to compare predicted rankings to actual rankings.

movie_idx <- tail(unrated_movie_idxs[post_mean_ordering], 1)

logistic <- function(x) {
if (x > 0) {
1/ (1 + exp(-x))
} else {
e <- exp((x)
e/ (1+e)
+
}

expectands <- list(function(c, gamma) 1 - logistic(gamma - c[1]),
function(c, gamma) logistic(gamma - c[1]) -
logistic(gamma - c[2]),

70

function(c, gamma) logistic(gamma - c[2]) -
logistic(gamma - c[3]),
function(c, gamma) logistic(gamma - c[3]) -
logistic(gamma - c[4]),
function(c, gamma) logistic(gamma - c[4]))
names (expectands) <- c('p[1]', 'p[2]', 'p[3]', 'pl4]', 'p[5]1")

var_repl <- list('c'=array(sapply(1:4,

function(k)
pasteO('cut_points[', ¢, ',', k, '1'))),
'gamma'=pasteO('gammal', c, ',', movie_idx, ']'))

for (k in 1:4) {
name <- pasteO('cut_points[', ¢, ',', k, ']")
affinity_samples[[name]] <- samples4[[name]]

}
prob_samples <-util$eval_expectand_pushforwards(affinity_samples,

expectands,
var_repl)

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_disc_pushforward_quantiles(prob_samples, names(expectands),

xlab="Rating",
ylab="Posterior Probability")

71

0.8

Posterior Probability

Rating

Interestingly we don’t actually predict a high rating for our top recommendation. In hindsight,
however, this shouldn’t be unexpected given how austere Customer 23 is with their stars.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_line_hist(data$ratings[data$customer_idxs == c],

0.5, 6.5, i,
xlab="Rating", main=paste('customer', c))

72

customer 23
50

40 -

30

Counts

20

10

Rating

Another benefit of this hierarchical approach is that we are not limited to making inferences
and predictions for existing customers. In particular we can also make inferences and predic-
tions for new customers by sampling new cut points and movie affinities from the respective
hierarchical population models. With the dearth of observed ratings these predictions will
be highly uncertain, but at the same time that uncertainty prevents us from making overly
confident claims.

7 Computational Considerations

I want to emphasize that this case study is first and foremost a demonstrative analysis. In
particular I reduced the data not for any statistical reason by rather to ensure that the models
would not take too long to run as I developed the analysis. Ultimately the final model took
about three hours to run on my laptop which wasn’t too onerous, especially given the total
number of parameters.

That said I do think it is useful to at least consider what the different priorities might be for
a more realistic analysis where a specific inferential goal would be driving the amount of data
to include and different computational resources might be available. What would it take to
speed up the fit of the final model or scale it up to a larger data set?

Recall that the overall cost of running Hamiltonian Monte Carlo can roughly be decomposed
into the number of iterations, the number of model evaluations per iteration, and the cost

73

of each model evaluation. The number of model evaluations per iteration is driven by the
posterior geometry and how hard the Hamiltonian Monte Carlo algorithm has to work to
explore it. For a fixed data set the two main ways that we can reduce computation is to
improve the posterior geometry or speed up the model evaluations.

Whenever working with hierarchical models we need to be considerate of the potentially prob-
lematic geometries to which they are prone. In this case study we seemed to do okay with a
monolithic non-centered parameterization for the normal and multivariate normal hierarchies,
but we could possibly improve the geometry by non-centering the parameters corresponding to
more prolific movies and customers. Before doing that, however, we can estimate the potential
for improvement by examining the length of the numerical Hamiltonian trajectories, and hence
how many model evaluations were needed per iteration, in our last fit.

util$plot_num_leapfrogs_by_chain(diagnostics)

Chain 1 (Stepsize = 0.061) Chain 2 (Stepsize = 0.062

1T T 1T 1T 1 1T T 1T 1T 1
10 30 50 10 30 50

Numerical Trajectory Length Numerical Trajectory Leng

Chain 3 (Stepsize = 0.059) Chain 4 (Stepsize = 0.064

1T T T T 1 1T T T 1T 1
10 30 50 10 30 50

Numerical Trajectory Length Numerical Trajectory Leng

Despite the complexity of the final model the numerical Hamiltonian trajectories weren’t all
that long. Even in an ideal case we can’t do do much better than ten or so leapfrog steps per
trajectory; consequently the maximum possible speed up that we could get from improving
the geometry here would be less than an order of magnitude! That’s not trivial but it suggests
that the computational cost is not being dominated by the number of model evaluations but
rather the cost of each model evaluation itself.

74

So how can we speed up the model evaluations? One immediate strategy is parallelization,
especially if we’re working with computers blessed with lots and lots of threads. For example
we can, at least in theory, parallelize the many matrix-vector products that are required in the
transformed parameters block. That said achieving these potential speed ups in practice is
always frustrated by the subtle input/output costs of passing all of the needed information to
each thread and back in each model evaluation.

Either approach to speeding up the fitting of the final model will be challenging, requiring
careful investigations and implementations and offering no guarantee of success. Even worse
neither of these strategies will really be able to compete with the quadratic cost of evaluating
the model, both in terms of N iomer * Nmovie a0d N2 .., if we attempt to add more customers
and/or movies. For example scaling up from 200 movies to 2000 movies, still only a fraction
of the total data set and an even more negligible part of the full data a company like Netflix
would have available, would require a 100 fold increase in the cost of evaluating the model.
Even if the posterior geometry doesn’t get any worst that pushes three hours to over a full

day of computation.

In practice we can fight quadratic scaling only so far. Ultimately the problem is that the final
model has to compare every movie to every other movie. Consequently the most effective
scaling strategy is to limit the number of movies to which each movie is compared. More
formally we need to introduce an appropriate sparsity structure on the movies so that most of
the N2

Tovie COvariances are zero.

Many methods attempt to learn a sparsity structure consistent with the observed data, dy-
namically turning off covariances that end up too small. This, however, is an outrageously
difficult learning problem and approximate results tend to be fragile without unreasonable
amounts of data. We can usually do much better by taking advantage of our domain expertise
to motivate appropriate sparsity structures directly.

For example we could first group movies into genres before modeling common baseline affinities,
correlated deviations across genres, and perhaps even correlated deviations for each movie
within each genre. This effectively introduces a block-diagonal structure to the full covariance
matrix which scales much more efficiently without sacrificing all of the correlations that can
help inform predictions for unrated movies.

Given the sparsity of the observed ratings we can learn only so much. Consequently we
might as well build a more restricted model of meaningful behaviors that we have a hope of
resolving than attempting to learn intricate details about which we just don’t have enough
information.

8 Conclusion

In this case study I developed a relatively sophisticated analysis of consumer feedback that
accounts for not only how each customer interprets the possible ordinal ratings in different

75

ways but also the variation in their preferences. To learn anything about these behaviors in
spite of the sparsity of the data we had to leverage our domain expertise and some intricate
modeling techniques.

If anything I hope that this case study demonstrates how powerful hierarchical modeling
techniques can be when used carefully. We used our domain expertise to sketch out the data
generating process first, and only then considered opportunities for heterogeneous behaviors.

By starting with the broad features of the data generating process we established an explicit
context that made is easier to identify not only what behaviors were heterogeneous but also
what heterogeneous behaviors might be coupled together. Moreover the structure of those
behaviors motivated appropriate population models. In this way we were able to develop an
elaborate model with multiple, multivariate hierarchies without becoming to overwhelmed in
the process.

Hierarchical modeling is so much more than one-dimensional normal population models!

Acknowledgements

A very special thanks to everyone supporting me on Patreon: Adam Fleischhacker, Adri-
ano Yoshino, Alejandro Navarro-Martinez, Alessandro Varacca, Alex D, Alexander Noll, An-
drea Serafino, Andrew Mascioli, Andrew Rouillard, Andrew Vigotsky, Ara Winter, Austin
Rochford, Avraham Adler, Ben Matthews, Ben Swallow, Benoit Essiambre, Bertrand Wilden,
boot, Bradley Kolb, Brendan Galdo, Bryan Chang, Brynjolfur Gauti Jonsson, Cameron Smith,
Canaan Breiss, Cat Shark, CG, Charles Naylor, Chase Dwelle, Chris Jones, Christopher
Mehrvarzi, Colin Carroll, Colin McAuliffe, Damien Mannion, dan mackinlay, Dan W Joyce,
Dan Waxman, Dan Weitzenfeld, Daniel Edward Marthaler, Daniel Saunders, Darshan Pandit,
Darthmaluus , David Galley, David Wurtz, Doug Rivers, Dr. Jobo, Dr. Omri Har Shemesh, Dy-
lan Maher, Ed Cashin, Edgar Merkle, Eli Witus, Eric LaMotte, Ero Carrera, Eugene O’Friel,
Felipe Gonzéalez, Fergus Chadwick, Finn Lindgren, Francesco Corona, Geoff Rollins, Guil-
herme Marthe, Hakan Johansson, Hamed Bastan-Hagh, haubur, Hector Munoz, Henri Wallen,
hs, Hugo Botha, Ian, Ian Costley, idontgetoutmuch, Ignacio Vera, Ilaria Prosdocimi, Isaac
Vock, Isidor Belic, jacob pine, Jair Andrade, James C, James Hodgson, James Wade, Janek
Berger, Jarrett Byrnes, Jason Martin, Jason Pekos, Jason Wong, jd, Jeff Burnett, Jeff Dotson,
Jeff Helzner, Jeffrey Erlich, Jerry Lin , Jessica Graves, Joe Sloan, John Flournoy, Jonathan
H. Morgan, Jonathon Vallejo, Joran Jongerling, Josh Knecht, June, Justin Bois, Kadar An-
dras, Karim Naguib, Karim Osman, Kristian Gardhus Wichmann, Lars Barquist, lizzie , LOU
ODETTE, Luis F, Marcel Liithi, Marek Kwiatkowski, Mariana Carmona, Mark Donoghoe,
Markus P., Marton Vaitkus, Matthew, Matthew Kay, Matthew Mulvahill, Matthieu LEROY,
Mattia Arsendi, Matéj Kolouch Grabovsky, Maurits van der Meer, Max, Michael Colaresi,
Michael DeWitt, Michael Dillon, Michael Lerner, Mick Cooney, Mike Lawrence, MisterMen-
tat , N Sanders, N.S. , Name, Nathaniel Burbank, Nic Fishman, Nicholas Clark, Nicholas
Cowie, Nick S, Ole Rogeberg, Oliver Crook, Olivier Ma, Patrick Kelley, Patrick Boehnke,

76

Pau Pereira Batlle, Pete St. Marie, Peter Johnson, Pieter van den Berg , ptr, quasar, Ramiro
Barrantes Reynolds, Ratl Peralta Lozada, Ravin Kumar, Rémi , Rex Ha, Riccardo Fusaroli,
Richard Nerland, Robert Frost, Robert Goldman, Robert kohn, Robin Taylor, Ryan Gan,
Ryan Grossman, Ryan Kelly, S Hong, Sean Wilson, Sergiy Protsiv, Seth Axen, shira, Simon
Duane, Simon Lilburn, Simone Sebben, sssz, Stefan Lorenz, Stephen Lienhard, Steve Har-
ris, Stew Watts, Stone Chen, Susan Holmes, Svilup, Tao Ye, Tate Tunstall, Tatsuo Okubo,
Teresa Ortiz, Theodore Dasher, Thomas Siegert, Thomas Vladeck, Tobychev , Tony Wuersch,
Tyler Burch, Virginia Fisher, Vladimir Markov, Wil Yegelwel, Will Farr, Will Lowe, Will Wen,
woejozney, yolhaj , yureq , Zach A, Zad Rafi, and Zhengchen Cai.

License

A repository containing all of the files used to generate this chapter is available on GitHub.

The code in this case study is copyrighted by Michael Betancourt and licensed under the new
BSD (3-clause) license:

https://opensource.org/licenses/BSD-3-Clause

The text and figures in this chapter are copyrighted by Michael Betancourt and licensed under
the CC BY-NC 4.0 license:

https://creativecommons.org/licenses/by-nc/4.0/

Original Computing Environment

writeLines(readLines(file.path(Sys.getenv("HOME"), ".R/Makevars")))

CC=clang

CXXFLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macr
CXX=clang++ -arch x86_64 -ftemplate-depth-256

CXX14FLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-ma
CXX14=clang++ -arch x86_64 -ftemplate-depth-256

sessionInfo()

7

https://github.com/betanalpha/quarto_case_studies/tree/main/ratings
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/licenses/by-nc/4.0/

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.4.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] colormap_0.1.4 rstan_2.32.6 StanHeaders_2.32.7

loaded via a namespace (and not attached):

[1] gtable_0.3.4 jsonlite_1.8.8 compiler_4.3.2 Rcpp_1.0.11

[5] parallel_4.3.2 gridExtra_2.3 scales _1.3.0 yaml_2.3.8

[9] fastmap_1.1.1 ggplot2_3.4.4 R6_2.5.1 curl_5.2.0

[13] knitr_1.45 tibble_3.2.1 munsell 0.5.0 pillar_1.9.0
[17] rlang 1.1.2 utf8 1.2.4 V8 4.4.1 inline 0.3.19
[21] xfun_0.41 RcppParallel 5.1.7 cli_3.6.2 magrittr_2.0.3
[25] digest_0.6.33 grid_4.3.2 lifecycle_1.0.4 vctrs_0.6.5
[29] evaluate_0.23 glue_1.6.2 QuickJSR_1.0.8 codetools_0.2-19
[33] stats4_4.3.2 pkgbuild_1.4.3 fansi_1.0.6 colorspace_2.1-0
[37] rmarkdown_2.25 matrixStats_1.2.0 tools_4.3.2 loo_2.6.0

[41] pkgconfig 2.0.3 htmltools_0.5.7

78

Stan
Program 1 modell.stan

functions {
real induced_dirichlet_lpdf(vector c, vector alpha, real phi) {
int K = num_elements(c) + 1;
vector[K - 1] sigma = inv_logit(phi - c);
vector [K] p;
matrix([K, K] J = rep_matrix(0, K, K);

// Induced ordinal probabilities
pl1]l = 1 - sigma[1l];
for (k in 2:(K - 1))

plk] = sigmalk - 1] - sigmalk];
plK] = sigmalK - 1];

// Baseline column of Jacobian
for (k in 1:K) J[k, 1] = 1;

// Diagonal entries of Jacobian

for (k in 2:K) {
real rho = sigmalk - 1] * (1 - sigmalk - 1]);
Jlk, k] = - rho;
Jk - 1, k] = + rho;

}

return dirichlet_lpdf(p | alpha)
+ log_determinant (J) ;

data {
int<lower=1> N_ratings;
array[N_ratings] int<lower=1, upper=5> ratings;

int<lower=1> N_customers;
array[N_ratings] int<lower=1, upper=N_customers> customer_idxs;

int<lower=1> N_movies;
array[N_ratings] int<lower=1, upper=N_movies> movie_idxs;

parameters {
vector [N_movies] gamma_ncp; // Non-centered movie affinities
real<lower=0> tau_gamma; // Movie affinity population scale

ordered[4] cut_points; // Custofidr rating cut points

}

transformed parameters {
// Centered movie affinities
vector [N_movies] gamma = tau_gamma * gamma_ncp;

b

Stan
Program 2 model2.stan

functions {
real induced_dirichlet_lpdf(vector c, vector alpha, real phi) {
int K = num_elements(c) + 1;
vector[K - 1] sigma = inv_logit(phi - c);
vector [K] p;
matrix([K, K] J = rep_matrix(0, K, K);

// Induced ordinal probabilities
pl1]l = 1 - sigma[1l];
for (k in 2:(K - 1))

plk] = sigmalk - 1] - sigmalk];
plK] = sigmalK - 1];

// Baseline column of Jacobian
for (k in 1:K) J[k, 1] = 1;

// Diagonal entries of Jacobian

for (k in 2:K) {
real rho = sigmalk - 1] * (1 - sigmalk - 1]);
Jlk, k] = - rho;
Jk - 1, k] = + rho;

}

return dirichlet_lpdf(p | alpha)
+ log_determinant (J) ;

data {
int<lower=1> N_ratings;
array[N_ratings] int<lower=1, upper=5> ratings;

int<lower=1> N_customers;
array[N_ratings] int<lower=1, upper=N_customers> customer_idxs;

int<lower=1> N_movies;
array[N_ratings] int<lower=1, upper=N_movies> movie_idxs;

parameters {
vector [N_movies] gamma_ncp; // Non-centered movie qualities
real<lower=0> tau_gamma; // Movie quality population scale

array[N_customers] ordered[4] cut_po%%ts; // Customer rating cut points

}

transformed parameters {
vector [N_movies] gamma = tau_gamma * gamma_ncp;

}

Stan
Program 3 model3.stan

functions {
real induced_dirichlet_lpdf(vector c, vector alpha, real phi) {
int K = num_elements(c) + 1;
vector[K - 1] sigma = inv_logit(phi - c);
vector [K] p;
matrix([K, K] J = rep_matrix(0, K, K);

// Induced ordinal probabilities
pl1]l = 1 - sigma[1l];
for (k in 2:(K - 1))

plk] = sigmalk - 1] - sigmalk];
plK] = sigmalK - 1];

// Baseline column of Jacobian
for (k in 1:K) J[k, 1] = 1;

// Diagonal entries of Jacobian

for (k in 2:K) {
real rho = sigmalk - 1] * (1 - sigmalk - 1]);
Jlk, k] = - rho;
Jk - 1, k] = + rho;

}

return dirichlet_lpdf(p | alpha)
+ log_determinant (J) ;

data {
int<lower=1> N_ratings;
array[N_ratings] int<lower=1, upper=5> ratings;

int<lower=1> N_customers;
array[N_ratings] int<lower=1, upper=N_customers> customer_idxs;

int<lower=1> N_movies;

array[N_ratings] int<lower=1, upper=N_movies> movie_idxs;

parameters {
vector [N_movies] gamma_ncp; // Non-centered movie affinities
real<lower=0> tau_gamma; // Movie affinity population scale

array[N_customers] ordered[4] cut_po%%ts; // Customer rating cut points
simplex[5] mu_q; // Rating simplex population location
real<lower=0> tau_q; // Rating simplex population scale

}

transformed parameters {

Stan
Program 4 model4.stan

functions {
real induced_dirichlet_lpdf(vector c, vector alpha, real phi) {
int K = num_elements(c) + 1;
vector[K - 1] sigma = inv_logit(phi - c);
vector [K] p;
matrix([K, K] J = rep_matrix(0, K, K);

// Induced ordinal probabilities
pl1]l = 1 - sigma[1l];
for (k in 2:(K - 1))

plk] = sigmalk - 1] - sigmalk];
plK] = sigmalK - 1];

// Baseline column of Jacobian
for (k in 1:K) J[k, 1] = 1;

// Diagonal entries of Jacobian

for (k in 2:K) {
real rho = sigmalk - 1] * (1 - sigmalk - 1]);
Jlk, k] = - rho;
Jk - 1, k] = + rho;

}

return dirichlet_lpdf(p | alpha)
+ log_determinant (J) ;

data {
int<lower=1> N_ratings;
array[N_ratings] int<lower=1, upper=5> ratings;

int<lower=1> N_customers;
array[N_ratings] int<lower=1, upper=N_customers> customer_idxs;

int<lower=1> N_movies;
array[N_ratings] int<lower=1, upper=N_movies> movie_idxs;

parameters {
// Baseline movie affinities population model
vector [N_movies] gammaO_ncp;
real<lower=0> tau_gammaO; 89
// Individual customer affinity population model
array[N_customers] vector[N_movies] delta_gamma_ncp;
vector<lower=0>[N_movies] tau_delta_gamma;
cholesky_factor_corr[N_movies] L_delta_gamma;

array [N_customers] ordered[4] cut_points; // Customer rating cut points

	Setup
	Data Exploration
	Homogeneous Customer Model
	Independent, Heterogeneous Customer Model
	Hierarchical Customer Model
	Hierarchical Customer Model With Heterogeneous Affinities
	Computational Considerations
	Conclusion
	Acknowledgements
	License
	Original Computing Environment

