Randomized Time Trial

Michael Betancourt

August 2024

Table of contents

1 Super Metroid Map Randomizer Races

2 Environment Setup

3 Data Exploration

4 Model Development

4.1
4.2
4.3
4.4
4.5

4.6

Model 1
Model 2
Model 3
Model 4

Inferential Comparison

4.5.1 Log Baseline

4.5.2 Entrant 29 Skill.
4.5.3 Entrant 44 Skill.
454 Entrant 83 Skill.

Possible Model Expansions

4.6.1 Idiosyncratic Entrants
4.6.2 Transcending Normal Population Models

4.6.3 Self-Improvement
4.6.4 Variable Variability

5 Actionable Insights

5.1
5.2

Ranking Entrants
Predicting Race Outcomes
Single Entrant Predictions

5.2.1
5.2.2 Head-to-Head Predictions

6 Conclusion

19
33
51
64
64
67
70
75
78
79
79
79
80

80
81
87
89
90

95

Acknowledgements 95

References 96
License 96
Original Computing Environment 97

Modeling the outcome of competitions, for example games between competing sports teams or
tests between students and a standardized set of questions, is a common statistics application.
Different types of competitions, however, are more or less compelling to certain audiences.
In this case study I consider a Bayesian analysis of a somewhat niche competition that also
happens to be particular compelling to the author — racing to see who can finish a modified
version of a thirty year old video game as quickly as possible.

1 Super Metroid Map Randomizer Races

In the era of the Super Nintendo Entertainment System® the assets comprising each video
game — such as code, visuals, and music — were stored in the read-only memory, or ROM,
of physical cartridges. ROM hacks rearrange the assets of a particular game, and in some
cases include assets from other games or even entirely new assets, to create novel gaming
experiences. Many popular ROM hacks, for example, add quality of life features to make older
games less frustrating to play. Others focus on drastically increasing the difficulty of existing
games while still others offer the ability to randomize locations, items, and more so that each
new playthrough is unique.

Super Metroid® was first released for the Super Nintendo Entertainment System® in 1994. The
game’s well-designed core mechanics interact surprisingly well with unintended bugs, resulting
in fast-paced and highly-technical game play that has long been a favorite target of the ROM
hacking community.

One prominent example is the Super Metroid Map Randomizer (“Super Metroid Map Rando,”
n.d.), or MapRando for short. The Super Metroid Map Randomizer is an open source project
started in 2021 that randomizes individual rooms, items, objectives, and more while also avoid-
ing any inconsistencies that would prevent players from completing the game. Randomization
options are extensive and can be configured to control everything from the topology of the
room placement to the difficulty of the techniques needed for completion. Each realized map is
referred to as a seed for the seed that initializes the behavior of the underlying pseudo-random
number generator.

By 2024 the project had stimulated a passionate user community that not only played the
games individually but also started to race against each other to see who could finish a partic-
ular seed the fastest. Because some seeds end up being easier to finish than others the races
tend to be a bit chaotic and consistently entertaining.

https://maprando.com
https://github.com/blkerby/MapRandomizer

Community races are even organized and recorded on the non-commercial speed running web-
site racetime.gg (“Super Metroid Randomizer | Racetime.gg,” n.d.). Conveniently this orga-
nization makes data on previous races, including individual entrants and their race outcomes,
readily accessible. The availability of this data in turn puts us in a position to infer and
compare the skill of those entrants and predict the outcome of future races.

2 Environment Setup

Before exploring that data we’ll need to set up our local R environment.

par(family="serif", las=1, bty="1",
cex.axis=1, cex.lab=1, cex.main=1,
xaxs="i", yaxs="i", mar = c(5, 5, 3, 1))

library(rstan)

rstan_options(auto_write = TRUE) # Cache compiled Stan programs
options(mc.cores = parallel::detectCores()) # Parallelize chains
parallel:::setDefaultClusterOptions(setup_strategy = "sequential")

To facilitate the implementation of Bayesian inference we’ll also need my recommended diag-
nostics and visualization tools.

util <- new.env()
source('mcmc_analysis_tools_rstan.R', local=util)
source('mcmc_visualization_tools.R', local=util)

3 Data Exploration

To assemble the full data set I programmatically scraped https://racetime.gg/smr for all
races with the title Map Rando that also include a link to the MapRando configuration in
their description. This then allowed me to collect additional information on the MapRando
version while also restricting consideration to only those seeds with a Hard skill assumption
and Tricky item progression setting.

For each valid race I then scraped information on the individual participants, in particular
whether they finished the race or forfeited and, if they finished, what their finish time was
in seconds. Forfeits are also referred to as “did not finish” or “DNF”. Although forfeit times
are available on https://racetime.gg/smr interactively they are difficult to extract program-
matically and I consequently did not include them.

https://racetime.gg/smr
https://github.com/betanalpha/mcmc_diagnostics
https://github.com/betanalpha/mcmc_diagnostics
https://github.com/betanalpha/mcmc_visualization_tools

Following the racetime.gg terminology I will refer to individual participants in a race as
entrants and their participation into a particular race as an entrance. For programming
convenience I encoded the individual entrant usernames into sequential numerical labels that
can also be used for indexing.

Each race consists of a variable number of entrances, with each entrance resulting in either a
finish time or a forfeit. To accommodate this ragged structure I organized the finish entrances
and forfeit entrances for all races into single arrays that are complemented with indexing arrays
for straightforward retrieval of individual race information.

The data collection scripts, translation between entrant indices and usernames, and final data
are all accessible in the GitHub repository for this chapter.

entrant_info <- read.csv("data/entrant_level defs.csv")

race_info <- read.csv("data/race_info.csv")
race_entrant_f info <- read.csv("data/race_entrant f info.csv")
race_entrant_dnf_info <- read.csv("data/race_entrant_dnf_info.csv")

data <- list("N_races" = nrow(race_info),
"N_entrants" = nrow(entrant_info),
"race N _entrants f" = race_info$race N entrants f,
"race_N_entrants_dnf" = race_info$race_N_entrants_dnf,
"race f start _idxs" = race_info$race f start idxs,
"race_f_end_idxs" = race_info$race_f_end_idxs,
"race_dnf start_idxs" = race_info$race dnf start idxs,
"race_dnf_end_idxs" = race_info$race_dnf_end_idxs,
"race_entrant f idxs" = race_entrant_f info$race entrant f idxs,
"race_entrant f times" = race_entrant_f_info$race_entrant_ f_times,
"N_entrances_fs" = length(race_entrant_f_info$race_entrant_f_idxs),
"race_entrant_dnf_idxs" = race_entrant_dnf_info$race_entrant_dnf_idxs,
"N_entrances_dnfs" = length(race_entrant_dnf_info$race_entrant_dnf_idxs))

Altogether the data spans 192 races across the first eight months of 2024.

cat(sprintf('%i total races', data$N_races))

192 total races

cat(sprintf('First Race: %s', race_info$race_datetimes[1]))

First Race: 2024-01-09T21:39:16.610866+00:00

https://github.com/betanalpha/quarto_chapters/tree/main/case_studies/racing/data

cat(sprintf('Last Race: %s',
race_info$race_datetimes[length(race_info$race_datetimes)]))

Last Race: 2024-07-27T23:28:49.606056+00:00

Those races included 107 distinct entrants.

cat(sprintf('%i total entrants', data$N_entrants))

107 total entrants

While the majority of races include at least five entrants some include over thirty.
par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
util$plot_line_hist(data$race_N_entrants_f + data$race_N_entrants_dnf,

0, 35, 3,
xlab="Total Entrants Per Race")

50

40 —

30

Counts

20

10

O 71T 7T 71T T T
0 5 10 15 20 25 30 3t
Total Entrants Per Race

Similarly most races see most entrants finishing but some races, presumable using more difficult
seeds, can see over half of the entrants forfeit.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
util$plot_line_hist(data$race_N_entrants_dnf /
(data$race N_entrants f + data$race N _entrants_dnf),
0, 1, 0.02,
xlab="Proportion of Forfeits Per Race")

70 |
60 —
50 —
40

Counts

30
20
10

0 I | i | |
0.0 0.2 0.4 0.6 0.8 1.C
Proportion of Forfeits Per Race

The finish times across races vary substantially, peaking near an hour but stretching from half
an hour all the way to multiple hours. This suggests that player skill, seed difficulty, or some
combination of the two, is highly variable from race to race.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))

util$plot_line_hist(data$race_entrant_f_times / 60, 0, 500, 10,
xlab="Finish Time (minutes)", main="All Races")

All Races

300

250 —

200

150 —

Counts

100 —

50

0 I f i I |
0 100 200 300 400 50C

Finish Time (minutes)

If we isolate the finish times for a few entrants near the top of the https://racetime.gg/smr
leader boards then we see much less variability, especially in the upper tail.

par (mfrow=c(2, 2), mar=c(5, 5, 2, 1))

for (e in c(18, 29, 65, 91)) {
times <- data$race_entrant_f_ times[which(data$race_entrant f_idxs == e)]
util$plot_line_hist(times / 60, 0, 220, 10,
xlab="Finish Time (minutes)",
main=paste("Entrant", e))

Entrant 18 Entrant 29

12 25
o 10 o 20
= 8 IS
O 4 o 10
2 5
O 717711 O 711+ —T1 1
0 50 150 0 50 150
Finish Time (minutes Finish Time (minute:
Entrant 65 Entrant 91
25
o 20 o 12
S 15 S 8
S 10 S
5 4
O 71T 711 o0 55—/
0 50 150 0 50 150
Finish Time (minutes Finish Time (minute:

Overall participation and proportion of forfeits exhibits its own heterogeneity across the indi-

vidual entrants.
par (mfrow=c(2, 1), mar=c(5, 5, 2, 1))

entrant f idxs <- function(e) {
which(data$race_entrant_f_idxs == e)

}

entrant_dnf idxs <- function(e) {
which(data$race_entrant_dnf_idxs == e)

}

N_entrant_f_races <- sapply(l:data$N_entrants,
function(e) length(entrant_f_idxs(e)))

N_entrant_dnf_races <- sapply(l:data$N_entrants,
function(e) length(entrant_dnf_idxs(e)))

barplot(N_entrant_f_races,
space=0, col=util$c_dark_teal, border="white",
xlab="Entrant Index", ylab="Total Races Finished")

barplot(N_entrant_dnf_races,

Total Races Finish

Total Races Forfeit

There are many more ways that we could dive further into the data here, but without domain
expertise to guide us it’s easy to get lost. Instead let’s leverage what understanding we’ve

space=0, col=util$c_dark_teal, border="white",
xlab="Entrant Index", ylab="Total Races Forfeited")

60
40

20 I|‘||... | _|||I.I|.|.|| Ll |‘| | “M||‘ ||||||. | I||‘|||||.| _|_|

o

Entrant Index

[ERN
oOhrhOON

Entrant Index

developed into an initial model.

4 Model Development

To make the modeling process as manageable as possible we will start simple and then add

features iteratively.

4.1 Model 1

To begin let’s ignore forfeits altogether and instead focus on modeling the finish times of the

entrants who do not forfeit in each race.

One of the challenging aspects of modeling races in general is that individual entrant be-
havior can depend on their position at any given time. For example an entrant in first
place might slow their pace to stay just ahead of the entrant in second place, while rac-
ers in lower places might play more aggressively in an attempt to catch up. While some
MapRando race entrants live-stream their play publicly the community largely follows the
rules of https://racetime.gg/smr which disallow entrants from following the progress of
any other entrants.

Consequently entrants are mostly ignorant of their position during races, at least until the first
entrants finish and post their finish times on the active https://racetime.gg/smr race page.
This suggest that modeling the finish time of each entrant independently of the other entrants,
without having to worry about interactions within each race, is a reasonable approximation to
the true race dynamics.

Now a particularly crude model of independent finish times might assume that the finish times
across all races concentrate around some common baseline value,

= tbaseline = eXp(fY) - 1 second.

Not all races, however, are the same.

For example some seeds result in map layouts that require traveling longer distances than
others and some require spending difficult techniques that usually take longer to complete
than others. We could account for this heterogeneity with a separate baseline finish time for
each seed, but we could also account for it by proportionally modifying the common baseline,

Mg = tbasclinc ' 6difficulty,s
=exp(y) - eXp()‘difficulty,s) -1 second

= exp(7 + Adifficulty,s) * 1 second.

Similarly not all entrants are the same. The entrants who are more experienced with Super
Metroid® game play in general, and MapRando game play in particular, should be able to
finish a random seed faster than those who are less experienced. Again we can model this with
a proportional modification to the common baseline,

1
Hge = tbaseline ' 5difficulty,s ' 5
skill,e
1
exp<)‘skill,e)

=exp(y + /\difﬁculty,s -)‘skill,e) -1 second.

= eXp(V) : exp()‘difﬁculty,s) -1 second

Note that this model is an example of an adversarial model where the result of a competition
between two agents concentrates around some central value p that increases when the ability

10

of the first agent,)\, is larger than the second,)\,, and decreases when the ability of the
second agent is larger than the first,

= f(Ar = Ay).

Comparing this model to other adversarial models, such as Bradley-Terry models and item
response theory models, can be a productive way to motivate useful model expansions. For
example if the MapRando algorithm ever suffered from weird bugs that sometimes resulted in
seeds insensitive to player skill then we could introduce a discrimination parameter for each
race, similar to some popular item response theory models,

Hge = exp(fy + o ()‘difficulty,s - Askill,e)) -1 second.

The smaller o is the less sensitive the finish times for the given seed will be to the contrast
between seed difficulty and entrant skill.

To complete our observational model we need to model the variation of finish times around
these baselines. One immediate possibility is the gamma family of probability density functions,
not in its conventional parameterizations but rather in its mean-dispersion parameterization.
For example the gamma family of probability density functions is typically parameterized in
terms of a shape parameter a and a scale parameter 5. We can also parameterize this same
family in terms of a location parameter

p = mean(a) = 7.

and a dispersion parameter

variance(a, ()

mean?(a, f3)

=)
1

Q
We can then define an appropriate observational model by replacing the location parameter p
with the seed-entrant baseline j,, for each entrant in a particular race.

Finally in order to elevate our observational model to a full Bayesian model we need to specify
a prior model over our model configuration variables. Here we’ll assume that the prior model
is built up from independent component prior models for each parameter.

To avoid unrealistically fast and slow races let’s constrain the baseline finish time to

1800 seconds haseline =< 5400 seconds
1800 seconds 5 exp(7) - 1 second £ 5400 seconds
1800 exp(7y) = 5400

log 1800 ~y =< log 5400.

QA QN &

11

We can ensure that 98% of the prior probability is contained within these bounds with the
prior model

2 72.32 2
= normal(vy | 8.045,0.237).

(log 5400 4+ log 1800 1 log 5400 — log 1800)
p(y) = normal |

Note that this prior model doesn’t suppress finish times below 30 minutes and above 90 minutes,
just the central baseline. The variation of the gamma observational model will allow for much
smaller and much larger finish times.

Similarly it would be a bit extreme if seed difficulty or entrant skill modified the baseline by
more than a factor of two,

QA
QA

052

N — N

log = SA < log2
—log2 <A < log 2.

A reasonable prior that achieves this soft containment is then

p(A) = normal ()\ 5 ' 533 5

1
= normal ()\ ‘ 0, 332 log2)

= normal(\ | 0,0.299).

log2+ (—log2) 1 log2— (—log2))

Lastly we need to consider the dispersion strength . Here let’s suppress model configurations
where the variance would exceed the squared mean,

0 variance(a, ()

QA

<1
mean?(«a, §) ~

(4 S L

One way to achieve this soft containment is with the prior model

0

QA

p(v) = half—normal P ’

257) = half-normal (¢ ‘ 0, 0.389> .

We can now implement our full Bayesian model as a Stan program, plug in the observed
data, and give Stan’s Hamiltonian Monte Carlo sampler a chance at exploring the posterior
distribution.

12

fit <- stan(file="stan_programs/modell.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

The warnings indicate strong auto-correlations in «, the difficulty parameters for some of the
seeds, and the skill parameters for some of the entrants.

diagnosticsl <- util$extract_hmc_diagnostics(fit)
util$check_all hmc_diagnostics(diagnosticsl)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samplesl <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samplesi,
c('gamma', 'difficulties',
'skills', 'psi'),
check_arrays=TRUE)
util$summarize_expectand_diagnostics(base_samples)

The expectands gamma, difficulties[140], difficulties[143], skills[1],
skills[2], skills([3], skills[4], skills[5], skills[6], skills[12],
skills[16], skills([17], skills[18], skills[19], skills[22], skills[24],
skills[26], skills[29], skills[30], skills[31], skills[34], skills[35],
skills[36], skills([43], skills[44], skills[45], skills[48], skills[49],
skills[51], skills[55], skills[57], skills[58], skills[59], skills[60],
skills[61], skills[62], skills[64], skills[65], skills[68], skills[69],
skills[70], skills[71], skills[72], skills[73], skills[78], skills[81],
skills[83], skills[84], skills[88], skills[90], skills[91], skills[93],
skills[94], skills[95], skills[96], skills[98], skills[99],
skills[100], skills[105], skills[107] triggered diagnostic warnings.

The expectands gamma, difficulties[140], difficulties[143], skills[1],
skills[2], skills[3], skills[4], skills[5], skills[6], skills[12],

skills[16], skills[17], skills[18], skills[19], skills[22], skills[24],
skills[26], skills[29], skills[30], skills[31], skills[34], skills[35],
skills[36], skills([43], skills[44], skills[45], skills[48], skills[49],
skills[51], skills([55], skills[57], skills[58], skills[59], skills[60],
skills[61], skills[62], skills[64], skills[65], skills[68], skills[69],
skills[70], skills([71], skills[72], skills[73], skills[78], skills[81],

13

skills[83], skills[84], skills[88], skills[90], skills[91], skills[93],
skills[94], skills[95], skills[96], skills[98], skills[99],
skills[100], skills[105], skills[107] triggered hat{ESS} warnings.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

Fortunately the empirical effective sample sizes are not quite small enough, and hence the
auto-correlations are not quite large enough, to compromise the accuracy of our Markov chain
Monte Carlo estimators, just limit their precision. It’s only when the empirical effective sample
sizes dip below ten or so that we really need to be worried.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
min_ess_hats <- util$compute_min_ess_hats(base_samples)
util$plot_line_hist(min_ess_hats, 0, 150, 10, col=util$c_dark,

xlab=paste0("Smallest Empirical Effective Sample Size\n",
"Across All Markov Chains For Each Expectand"))

Warning in check_bin_containment(bin_min, bin_max, values): 212 values (70.4%)
fell above the binning.

abline(v=100, col="#DDDDDD", lty=3, lwd=3)

]

15

10

- 1L

Counts

0 | | | | | | |

0O 20 40 60 80 100 140
Smallest Empirical Effective Sample Size
Across All Markov Chains For Each Expect:

14

This behavior is unfortunately not uncommon with adversarial models. Without enough data
the model is vulnerable to degeneracies where some of the additive terms vary without changing
their sum, tracing out a narrow plane of consistent model configurations that can be difficult
to explore efficiently.

Indeed we see that the consistent values of v are negatively correlated, albeit weakly, with the
seed difficulties: « can increase without changing the baseline finish times so long as all of the
seed difficulties decrease at the same time.

util$plot_div_pairs(c('gamma'),
c('difficulties[84]', 'difficulties[90]',
'difficulties[147]', 'difficulties[165]'),
samplesl, diagnosticsl)

<'-0.05 o 0.10
%—0.10 % 0.05
2015 2 0.00
g 025 £ -0.10
£-0.30 =T
© © 015 17—
8.50 8.60 8.70 850 8.60 8.7C
gamma gamma
5 12" 0.25
— —
D % 0.15
Q Q
= S 0.05
L2 o
£ £ -0.05 g
© © T T T I
8.50 8.60 8.70 850 8.60 8.7C
gamma gamma

On the other hand + is positively correlated with the individual skill parameters. In this case
increases to v and all of the entrant skills cancel to give the same baseline finish times.

util$plot_div_pairs(c('gamma'),
c('skills[1]', 'skills[30]',
'skills[55]', 'skills[107]'),
samplesl, diagnosticsl)

15

2 00 ')
B -0.1 %
-0.2
850 8.60 8.70 850 8.60 8.7C
gamma gamma
0.15 —
2" 0.10 S
' 0.05 =
= 0.00 =
~0.05 {8 »
850 8.60 8.70 850 8.60 8.7C
gamma gamma

If we wanted to be careful then we could run longer Markov chains to compensate for the large
auto-correlations and ensure more well-behaved Markov chain Monte Carlo estimation. As
this is our first model, however, let’s just push ahead to the posterior retrodictive checks.

There are a lot of summary statistics that we might consider for our visual posterior retrodictive
checks. For example we could use a histogram summary statistic that aggregates the finish
times across all races. Here we see a pretty strong retrodictive tension with the observed
finish times exhibiting stronger skewness than what the posterior predictive distribution can
accommodate.

par (mfrow=c(1, 1), mar=c(5, 5, 3, 1))
util$plot_hist_quantiles(samplesl, 'race_entrant_f_times_pred',
baseline values=data$race_entrant f times,

xlab="Finish Time (s)",
main="All Races, All Entrants")

16

All Races, All Entrants

400

300 —

200

Counts

100 —

I I I
5000 10000 15000 20000 2500(

Finish Time (s)

This tension could be due to inadequacy of the gamma observational model, but it could also
be a consequence of poorly modeling the heterogeneity in seed difficulties and entrant skills.
One way to explore these possibilities is to separate the histogram summary statistic by race
and entrant.

Here there doesn’t seem to be any substantial retrodictive tension in the finish times for a few
arbitrarily selected races.

par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))

for (r in c(7, 33, 77, 140)) {
idxs <- data$race_f_start_idxs([r] :data$race_f_end_idxs[r]
names <- sapply(idxs,
function(n) pasteO('race_entrant_f_times_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samplesl, names)
util$plot_hist_quantiles(filtered_samples, 'race_entrant_f_times_pred',
1000, 11000, 1000,
baseline values=data$race_entrant_f_ times[idxs],
xlab="Finish Time (s)",
main=pasteO("Race ", r, ", All Entrants"))

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,

17

"predictive value"): 49 predictive values (0.1%) fell above the binning.

Warning in check_bin_containment (bin_min, bin_max, collapsed_values,
"predictive value"): 108 predictive values (0.2%) fell above the binning.

Race 7, All Entrants Race 33, All Entrants
5
o 4] %) 6
s 3 S 4
S 2 S 2
1 N
0 0
2000 6000 2000 6000
Finish Time (s) Finish Time (s)
Race 77, All Entrants Race 140, All Entrant:
20
10
g g g 15
S 6 3 10
S 4 S
2 5
0 T 0 T
2000 6000 2000 6000
Finish Time (s) Finish Time (s)

Similarly the finish time behaviors for a few spot-checked entrants are consistent between the
observed data and our posterior predictions. One might argue that the observed behavior
for entrant 93 is slightly heavier-tailed than the posterior predictions but the disagreement is

relatively weak.
par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))

for (e in c(19, 31, 73, 93)) {
idxs <- which(data$race_entrant f idxs == e)

names <- sapply(idxs,
function(n) pasteO('race_entrant_f_times_pred[', n, ']'))

filtered_samples <- util$filter_expectands(samplesl, names)
util$plot_hist_quantiles(filtered_samples, 'race_entrant_f_times_pred',
1000, 12000, 1000,
baseline values=data$race_entrant_f_ times[idxs],

xlab="Finish Time (s)",

18

main=paste0("All Races, Entrant ", e))
Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 1 predictive value (0.0%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 11 predictive values (0.0%) fell above the binning.

All Races, Entrant 19 All Races, Entrant 31
6 4
%))]
£ 4 s S0 [
o A= o 2
o 2 | © 194 I
0 0
2000 8000 2000 8000
Finish Time (s) Finish Time (s)
All Races, Entrant 73 All Races, Entrant 92
6
@ 2]
S 47 = S
(@] (@]
o 2 B @)
0
2000 8000 2000 8000
Finish Time (s) Finish Time (s)

If we really wanted to be thorough then we would need to examine the behavior of the hundreds
of finish time histograms across all of the individual races and all of the individual entrants.
Based on the reasonable behavior of the few spot checks that we’ve performed here, however,
let’s see if changing the observational model addresses the issue.

4.2 Model 2

The gamma family of probability density functions are naturally complemented with the in-
verse gamma family of probability density functions. Because the gamma probability density
functions exhibit heavier tails towards zero and lighter tails towards infinity their peaks skew
towards larger values. On the other hand the inverse gamma probability density functions

19

exhibit lighter tails towards zero and heavier tails towards infinity, resulting in peaks that
skew towards smaller values. This conveniently contrasting behavior might be exactly what
we need to address the retrodictive tension in our first model.

In order to build an inverse gamma observational model we need to engineer a location-
dispersion parameterization. The inverse gamma family, like the gamma family, is typically
parameterized in terms of a shape parameter o and a scale parameter 5. At the same time we
can also parameterize the family in terms of a location parameter

g

a—1

= mean(a, 3) =
and a dispersion parameter

_ variance(a, ()

mean?(a,)
2

=) ()
1
a—2

2

Let’s try swapping the gamma observational model with an inverse gamma observational
model.

fit <- stan(file="stan_programs/model2.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

The computational diagnostics continue to show strong auto-correlation warnings but nothing
else.

diagnostics2 <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics2)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples?2,
c('gamma', 'difficulties',
'skills', 'psi'),
check_arrays=TRUE)
util$summarize_expectand_diagnostics(base_samples)

20

The expectands gamma, difficulties[140], difficulties[147], skills[1],
skills[2], skills[3], skills[4], skills[5], skills[6], skills[12],
skills[16], skills([17], skills[18], skills[19], skills[22], skills[24],
skills[26], skills[28], skills[29], skills[30], skills[31], skills[34],
skills[35], skills[36], skills[43], skills[44], skills[45], skills[48],
skills[49], skills([51], skills[55], skills[57], skills[58], skills[59],
skills[60], skills[61], skills[62], skills[64], skills[65], skills[68],
skills[69], skills([70], skills[71], skills[72], skills[73], skills[78],
skills[81], skills([88], skills[90], skills[91], skills[93], skills[94],
skills[95], skills[96], skills[98], skills[99], skills[100],
skills[105], skills[107] triggered diagnostic warnings.

The expectands gamma, difficulties[140], difficulties[147], skills[1],
skills[2], skills[3], skills[4], skills[5], skills[6], skills[12],
skills[16], skills[17], skills[18], skills[19], skills[22], skills[24],
skills[26], skills[28], skills[29], skills[30], skills[31], skills[34],
skills[35], skills([36], skills[43], skills[44], skills[45], skills[48],
skills[49], skills[61], skills[55], skills[57], skills[58], skills[59],
skills[60], skills([61], skills[62], skills[64], skills[65], skills[68],
skills[69], skills[70], skills[71], skills[72], skills[73], skills[78],
skills[81], skills[88], skills[90], skills[91], skills[93], skills[94],
skills[95], skills[96], skills[98], skills[99], skills[100],
skills[105], skills[107] triggered hat{ESS} warnings.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

Again the auto-correlations are not strong enough to undermine our Markov chain Monte
Carlo estimators entirely. Indeed they seem to be a bit better than before.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
min_ess_hats <- util$compute_min_ess_hats(base_samples)
util$plot_line_hist(min_ess_hats, 0, 150, 10, col=util$c_dark,

xlab=paste0("Smallest Empirical Effective Sample Size\n",
"Across All Markov Chains For Each Expectand"))

Warning in check_bin_containment (bin_min, bin_max, values): 214 values (71.1%)
fell above the binning.

21

abline(v=100, col="#DDDDDD", lty=3, lwd=3)

20

15

10

Counts

0 T T T T 1

0 20 40 60 80 100 140
Smallest Empirical Effective Sample Size
Across All Markov Chains For Each Expect:

It looks like this may have done the trick. The observed and posterior predictive behavior of
the aggregate finish time histogram is a bit more consistent than it was in our first model.

par (mfrow=c(1, 1), mar=c(5, 5, 3, 1))
util$plot_hist_quantiles(samples2, 'race_entrant_f_times_pred',
baseline values=data$race_entrant_f_ times,

xlab="Finish Time (s)",
main="A1ll Races, All Entrants")

22

All Races, All Entrants

400 —

300 —

Counts

200 —

100 —

5000 10000 20000

Finish Time (s)

The retrodictive agreement in the individual race finish time histograms is similar to what we
saw above. In particular no new retrodictive tensions have arisen.

par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))

for (r in c(7, 33, 77, 140)) {
idxs <- data$race_f_start_idxs([r] :data$race_f_end_idxs[r]
names <- sapply(idxs,
function(n) pasteO('race_entrant_f_times_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples2, names)
util$plot_hist_quantiles(filtered_samples, 'race_entrant_f_times_pred',
1000, 11000, 1000,
baseline values=data$race_entrant_f_ times[idxs],
xlab="Finish Time (s)",
main=pasteO("Race ", r, ", All Entrants"))

Warning in check_bin_containment (bin_min, bin_max, collapsed_values,
"predictive value"): 71 predictive values (0.2J%) fell above the binning.

Warning in check_bin_containment (bin_min, bin_max, collapsed_values,
"predictive value"): 133 predictive values (0.2%) fell above the binning.

23

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 4 predictive values (0.0%) fell above the binning.

Race 7, All Entrants Race 33, All Entrants

Counts
OFRLNWA~OI

Counts
oON MO

i
2000 6000 2000 6000
Finish Time (s) Finish Time (s)
Race 77, All Entrants Race 140, All Entrant:
20
2 2 15 §
3 s 1014
(@) O 5 =
T O =F—T1tT1
2000 6000 2000 6000
Finish Time (s) Finish Time (s)

Interestingly the heavier tail of the inverse gamma family appears to allow the posterior predic-
tive behavior for entrant 93 to spread out further and better match the observed behavior.

par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))

for (e in c(19, 31, 73, 93)) {
idxs <- which(data$race_entrant_f_idxs == e)
names <- sapply(idxs,
function(n) pasteO('race_entrant_f_times_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples2, names)
util$plot_hist_quantiles(filtered_samples, 'race_entrant_f_times_pred',
1000, 12000, 1000,
baseline values=data$race_entrant f times[idxs],
xlab="Finish Time (s)",
main=paste0("All Races, Entrant ", e))

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 9 predictive values (0.0%) fell above the binning.

24

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2 predictive values (0.0%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 11 predictive values (0.0%) fell above the binning.

All Races, Entrant 19 All Races, Entrant 31
6 4
[2) 2]
2 a4 g 3 |
3 8 |= a3 2
o 2 » o 1 0 |
0 0
2000 8000 2000 8000
Finish Time (s) Finish Time (s)
All Races, Entrant 73 All Races, Entrant 92
g 6 2
S 4 o= 5
(@] @]
O 2 B O
0
2000 8000 2000 8000
Finish Time (s) Finish Time (s)

With no immediate reason to doubt our modeling assumptions we can finally move on to
investigating our posterior inferences. The marginal posterior distributions for v and v look
reasonable, with both strongly contracting within the prior model.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples2[['gamma']], 20,
display_name="gamma")

util$plot_expectand_pushforward(samples2[['psi']l], 20,
display_name="psi")

25

Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width

8.50 8.70 0.018 0.02:

gamma psi

While the values of the individual seed difficulties all seem reasonable there does appear to be
an unexpected pattern across the races. Initially the difficulties systematically decay before
flatting out.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_races,
function(r) pasteO('difficulties[', r,']"'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Race",
ylab="Difficulty")

26

0.6—'}

0.4 -
i
0.2 -

|

o

N
I

Difficulty
o
o
l B —
—4--'—0—_._._._
e

|
o
~
|
——
——

|
o
o

I

Race
On the other hand the entrant skills exhibit both reasonable values and no systematic pat-

terns.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_entrants,
function(n) pasteO('skills[', n,']1"))

util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Entrant",

ylab="Skill")

27

0.4 LI | I
" i '}* :}l
0.2 1| 4t fIGE LU}
| : A AT
_ 0'0_"'“ ' ';||,“J hi' ! L‘i
5 024 |1] RV L

0.4 ! | I|| R

-0.6 —t

20 40 60 80 100

Entrant

Let’s go back to the difficulties and consider why we might see a pattern like that. Notice that
the seeds for each race are ordered by the time at which the race occurred. Consequently the
pattern we see is likely a relationship between seed difficulty and time.

One possibility is that the seed difficulties are actually getting easier. Another possibility is
that our inferences for the seed difficulties are actually compensating for other time-dependent
behaviors in these races that the model cannot otherwise accommodate. For example if the
entire racing community was gradually getting better at the game then the entrant skills would
improve with time. Because our model assumes static skills, however, this improvement could
manifest only as decreasing seed difficulties.

In order to distinguish between these possible hypotheses let’s dive into this inferential behavior
a bit deeper. If the MapRando code were static then it would be natural to assume that the
seed difficulties scatter around some constant baseline. The MapRando code, however, is not
static and has in fact undergone consistent develop throughout 2024. Fortunately the code
version of each seed is included in our data, and we can visualize the MapRando development
by overlaying the difficulties with the version numbers.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 5))
names <- sapply(l:data$N_races,
function(r) pasteO('difficulties[', r,']"'))

util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Race",

28

ylab="Difficulty")

text_versions <- c("105", "108", "109", "111",
"112 \\(DEV\\)", "112", "113 \\(DEV\\)", "113")
num_versions <- c(105, 108, 109, 111, 111.5, 112, 112.5, 113)
versions <- race_info$versions
for (n in seq_along(text_versions)) {
versions <- gsub(text_versions[n], num_versions[n], versions)
}

versions <- as.numeric(versions)

par (new=TRUE)

plot(0, type='n', axes=FALSE, bty = "n",
xlab = "", xlim=c(1, data$N_races),
ylab = "", ylim=c(104, 114))

plot_xs <- sapply(l:data$N_races, function(r) c(r - 0.5, r + 0.5))
dim(plot_xs) <- c(1, 2 * data$N_races)

for (r in 1:data$N_races) {

idxl <- 2 xr - 1

idx2 <- 2 *x r

lines(plot_xs[1, idx1:idx2], rep(versions[r], 2), col=util$c_mid_teal, lwd=3)
+

mtext ("Version", side=4, col=util$c_mid_teal, line=3, las=0)
axis(4, ylim=c(104, 114), las=1,
col=util$c_mid_teal, col.axis=util$c_mid_teal)

abline(v=16.5, col="#DDDDDD", 1lwd=3)
abline(v=87.5, col="#DDDDDD", 1lwd=3)

29

— 114

0.6
“+— + | 11
0.4 —} iHL 0+ﬁ+ J i
0.2 414" T4 g++ * 14 110
2 f | RS IR 5
E 0.0 - +++j *#*Wq +th ﬁ"#ﬁh“ '%
a 1 ”*i g Lt +++++W+ﬂ,_ 108 =
02Ty | i I
t it A
04 1 titd b T 106
_ | 1 :
06 |

| | I 104

Race

Indeed many of the prominent patterns in seed difficulty over time perfectly line up with the
transition from one version to another. In hindsight this is completely reasonable as each
version improves the randomization logic to be more consistent and easier for experienced
players to manage, especially in the earlier versions.

What about the hypothesis of improving entrant skills? If entrant skills were improving then
it would be reasonable to expect systematic patterns between entrant skill and their overall
experience with MapRando. While we do not have access to any exact quantification of
experience we can consider proxies, such as the total number of race entrances. In particular
while entrants might play MapRando, and gain experience, outside of official races that play
time is likely to at least somewhat scale with the number of race entrances.

total _entrances <- table(data$race_entrant f idxs)
sorted_entrances <- as.data.frame(sort(total_entrances))

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(sorted_entrances$Varl,
function(n) pasteO('skills[', n, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Entrants Ordered By Total Entrances",
xticklabs=sorted_entrances$Varl,
ylab="Skill")

30

0.4 — l o !
t bR
0.2 bt %
l i .‘ii l}' ! {': Y/ ~"|l*
0.0 l fl i {'h i]

Skill

-0.2 —|I “. ii i{ t lh ti
—0.4—H|| I t '

-0.6 t

-0.8 i

10 52 82 92 68 2 30 70 5 4

Entrants Ordered By Total Entrance

The most striking pattern that we see is that the uncertainty in the entrant skill inferences
decreases with increasing participation, which is just a consequence of having more data from
which to learn. Beyond the decreasing uncertainty there might also be a mild increase in skill
for the most experienced players.

That said this increase is not necessarily tied to increased experience. For example entrant
skills might be fixed with more skilled players just enjoying the MapRando races more and
hence playing more.

In order to distinguish between these possibilities we would need to start investigating how
the behavior for a single entrant changes with increasing experience. If entrant skills increased
enough, for instance, then we would see the finish times for a particular entrant systematically
decrease with an increasing number of entrances.

Here let’s look at entrant 65.
e <- 65
cum_completed_races <- c()

completion_times <- c()

for (r in 1:data$N_races) {
N_previous_races <- length(cum_completed_races)

entrant_idxs <- data$race_f_start_idxs[r] :data$race_f_end_idxs[r]

31

if (e %in% data$race_entrant_f_idxs[entrant_idxs]) {
entrant_idx <- which(data$race_entrant_ f_idxs[entrant_idxs] == e)
time <- data$race_entrant_f_times[data$race_f_start_idxs[r] + entrant_idx - 1]

if (N_previous_races == 0) {
cum_completed_races <- c(1)
} else {

cum_completed_races <- c(cum_completed_races,
cum_completed_races[N_previous_races] + 1)
}
completion_times <- c(completion_times, time)
} else {
if (N_previous_races > 0) {
cum_completed_races <- c(cum_completed_races,
cum_completed_races[N_previous_races])
completion_times <- c(completion_times,
completion_times[N_previous_races])

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

plot(cum_completed_races, completion_times / 60,
pch=16, cex=1.0, col=util$c_dark,
xlab="Total Entrances",
ylab="Completion Time (minutes)",
main=paste("Entrant", e))

32

Entrant 65

e °
*5' 100] Py [Y
2 °
£ o
£ g0-4e % o, o
= b ° *® ° ¢
c ° °
S b oo ®oe ©® 4:.. o e’
5] ° ®e °
= 60 — o ®
= e © o° e S
g ° o © ° «
@) ° ° L]

40 °

10 20 30 40 50 60

Total Entrances

While there might be a small reduction in the variation of finish times there doesn’t seem to be
any systematic increase or decrease in the mean. That’s not to say that skills don’t improve,
just that they’re not improving strongly enough to manifest in this particular visualization.

Overall the development of the MapRando code offers a satisfying explanation for the patterns
we see the in seed difficulties. That said it’s always helpful to keep the other hypotheses in
mind, especially if we are able to collect more data in the future.

4.3 Model 3

For our next model let’s consider forfeits. The danger with ignoring forfeits is that if the forfeit
probability is coupled with entrant skill then inferences from the finish times alone will give
us a biased view of those skills.

One possible assumption is that forfeits are completely random. For example entrants could
forfeit mostly due to unexpected events that arise during each race that have nothing to do
with their performance. In this case we could still extract information from the forfeit times

33

because we can lower bound what the finish time would have been,

p(tforfeit | Hses qzb) = ﬂ-([tforfeit7 OO) | Hses 1/})

tforfeit
/ dt inv-gamma(t | .,)
0

1— Hinv—gamma(tforfeit | Hses w)

Unfortunately while forfeit times are recorded they are difficult to programmatically access
from https://racetime.gg/smr.

Forfeiting, however, is unlikely to be completely random. Entrants are more likely to forfeit
when they’re frustrated by the overall difficulty, for example when they get lost in a complex
map layout or die at an inopportune point and lose too much progress. This suggests that
D(tiorseir) Should depend on the contrast between seed difficulty and entrant skill,

p(tforfeit | Adifficulty,s?)‘skill,e) = f()‘difficulty,s - Askill,e)‘

To start let’s assume a logistic model,

p(tforfeit ’)‘difficulty,s7)‘skill,e7 Kes Be) = logiStiC(IBe ' ((Adifficulty,s - Askill,e) - He»?

where k quantifies the threshold contrast where an entrant achieves a forfeit probability of %
and S quantifies how sensitive the forfeit probability is to the difference around this threshold.
In order to ensure that a larger contrast always results in a higher forfeit we’ll need to assume
that g is limited to only positive values.

Beyond this functional form it’s not straightforward to elicit domain expertise about reasonable
values for x and (3. Here let’s just take a prior model that constraint x and 8 below five in
order to avoid saturating the outputs of the logistic function too quickly.

Lastly once we explicitly model forfeits we are in a position to predict forfeits. This in turn
provides new opportunities for retrodictive check summary statistics. In particular here we
will consider the total number of forfeits in each race.

fit <- stan(file="stan_programs/model3.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

The diagnostics continue to complain about strong auto-correlations but no new problems
have arisen.

diagnostics3 <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics3)

34

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples3 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples3,
c('gamma', 'difficulties’,
'skills', 'kappas',
'betas', 'psi'),
check_arrays=TRUE)
util$summarize_expectand_diagnostics(base_samples)

The expectands gamma, skills[1], skills[3], skills[4], skills[5],
skills[12], skills[16], skills[17], skills[18], skills[22], skills[24],
skills[26], skills[29], skills[30], skills[34], skills[36], skills[43],
skills[44], skills([45], skills[48], skills[55], skills[57], skills[58],
skills[59], skills([60], skills[64], skills[65], skills[70], skills[71],
skills[72], skills([73], skills[78], skills[81], skills[88], skills[90],
skills[91], skills[93], skills[94], skills[95], skills[96],
skills[100], skills[105], skills[107], kappas[44], kappas[94],
kappas[98] triggered diagnostic warnings.

The expectands gamma, skills[1], skills[3], skills[4], skills[5],
skills[12], skills[16], skills[17], skills[18], skills[22], skills[24],
skills[26], skills[29], skills[30], skills[34], skills[36], skills[43],
skills[44], skills([45], skills[48], skills[55], skills[57], skills[58],
skills[59], skills[60], skills[64], skills[65], skills[70], skills[71],
skills[72], skills[73], skills[78], skills[81], skills[88], skills[90],
skills[91], skills[93], skills[94], skills[95], skills[96],
skills[100], skills[105], skills[107], kappas[44] triggered hat{ESS}
warnings.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

Perhaps surprisingly the worst auto-correlations continue to slightly improve.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))

min_ess_hats <- util$compute_min_ess_hats(base_samples)
util$plot_line_hist(min_ess_hats, 0, 150, 10, col=util$c_dark,
xlab=pasteO("Smallest Empirical Effective Sample Size\n",
"Across All Markov Chains For Each Expectand"))

35

Warning in check_bin_containment(bin_min, bin_max, values): 446 values (86.6%)
fell above the binning.

abline(v=100, col="#DDDDDD", 1lty=3, lwd=3)

14
12
10

Counts

8
6
4 —
2
0

0O 20 40 60 80 100 140
Smallest Empirical Effective Sample Size
Across All Markov Chains For Each Expect:

The retrodictive agreement between the observed and posterior predictive finish time his-
tograms continues.

par (mfrow=c(1, 1), mar=c(5, 5, 3, 1))
util$plot_hist_quantiles(samples3, 'race_entrant_f_times_pred',
baseline values=data$race_entrant f times,

xlab="Finish Time (s)",
main="A1l1l Races, All Entrants")

36

All Races, All Entrants

300

200

Counts

100

I I
5000 10000 15000 20000

Finish Time (s)

Now we can also consider the number of forfeits in each race. Fortunately the behavior of this

statistic is also reasonably consistent.
par (mfrow=c(1, 1), mar=c(5, 5, 3, 1))

names <- sapply(l:data$N_races,
function(r) pasteO('race_N_entrants_dnf_pred[', r,']'))

util$plot_disc_pushforward quantiles(samples3, names,
baseline_values=data$race_N_entrants_dnf,

xlab="Race",
ylab="N_dnf")

37

N dnf

N
I

.
8 e
—

‘-) |
|||l] PO R IRk l
z jliﬂl Illl unl.,"'; Fh. hmi | Iﬂ,'llli (((((| I‘

50 100 150

Race

To make the comparison more clear we can always visualize the residuals and then compare
to zero.

par (mfrow=c(1, 1), mar=c(5, 5, 3, 1))

names <- sapply(l:data$N_races,
function(r) pasteO('race_N_entrants_dnf_pred[', r,']'))
util$plot_disc_pushforward_quantiles(samples3, names,
baseline_values=data$race_N_entrants_dnf,
residual=TRUE,
xlab="Race",
ylab="N_dnf")

38

N_dnf
o
e
—
_=;35;
—
—
—=
_———,
——
=
| =

I I I
50 100 150

Race

Finally the finish time histograms separated by selected races and entrants also show no signs
of retrodictive tension.

par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))

for (r in c(7, 33, 77, 140)) {
idxs <- data$race_f_start_idxs[r]:data$race_f_end_idxs[r]
names <- sapply(idxs,
function(n) pasteO('race_entrant_f_times_pred[', n, ']'))

filtered_samples <- util$filter_expectands(samples3, names)

util$plot_hist_quantiles(filtered_samples, 'race_entrant_f_times_pred',
1000, 11000, 1000,
baseline_values=data$race_entrant f_ times[idxs],
xlab="Finish Time (s)",

main=paste0("Race ", r, ", All Entrants"))
Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 99 predictive values (0.2}) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 152 predictive values (0.2}%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 3 predictive values (0.0%) fell above the binning.

39

Race 7, All Entrants

Counts
OFRLNWA~OI

2000 6000

Finish Time (s)

Race 77, All Entrants

=Y

Counts
ONPOWO

2000 6000

Finish Time (s)

par (mfrow=c(2, 2), mar=c(5,

Counts

Counts

Race 33, All Entrants

oON O
[]

2000 6000

Finish Time (s)

Race 140, All Entrant:

20
15
10
5
0

2000 6000

Finish Time (s)

5, 3, 1))

for (e in c(19, 31, 73, 93)) {
idxs <- which(data$race_entrant f idxs == e)

names <- sapply(idxs,
function(n) pasteO('race_entrant_f_times_pred[', n,

1))

filtered_samples <- util$filter_expectands(samples3, names)

util$plot_hist_quantiles(filtered_samples,
1000,
baseline values=data$race_entrant_f_ times[idxs],
xlab="Finish Time (s)",
main=paste0("All Races, Entrant ", e))

'race_entrant_f_times_pred',

12000, 1000,

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 6 predictive values (0.0%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 1 predictive value (0.0%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 10 predictive values (0.0%) fell above the binning.

40

All Races, Entrant 19 All Races, Entrant 31

6 4
])]
£ 4 s SO m
o 2 gl = o 2
O B O 1 I l
0 0
2000 8000 2000 8000
Finish Time (s) Finish Time (s)
All Races, Entrant 73 All Races, Entrant 92
2] 6 2]
[4 c
g i85 g
O 2 B O
0
2000 8000 2000 8000
Finish Time (s) Finish Time (s)

Without any concerns about our modeling assumptions we can move on to examining the
resulting posterior inferences. Inferences for the existing parameters are at least superficially
similar to those from the second model; we’ll make a more direct comparison in Section 4.5.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['gamma']], 20,
display_name="gamma")

util$plot_expectand_pushforward(samples3[['psi']], 20,

display_name="psi")

41

Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width

8.55 8.70 0.018 0.02:
gamma psi
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
names <- sapply(l:data$N_races,
function(r) pasteO('difficulties[', r,']"'))
util$plot_disc_pushforward_quantiles(samples3, names,

xlab="Race",
ylab="Difficulty")

42

© O
> o
I I

¢ o
N

.—0-%_

.

Difficulty
|
o o
N o
| |
————
e
—f—o—
e o
-—.___' m_‘_
SR _._-_'_.-_.._
., e
_._I—o--_.—_ e
.F.__“_‘ -
e .
R p——

|
o
~
|
-
—‘__‘.=':

|
o«
o

I

50 100 150
Race
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
names <- sapply(l:data$N_entrants,

function(n) pasteO('skills[', n,']"))

util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Entrant",

ylab="Skill")

43

0.6

0.4 — ¢t
Hl ot
< I
LAY

| i
~0.6 -t

Skill

-0.8 I

I I I I I
20 40 60 80 100

Entrant

More interesting here are the posterior inferences for the new, forfeit-related parameters. Over-
all the uncertainties are relatively large but we can pick out a few exceptional behaviors

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_entrants,
function(n) pasteO('kappas[', n,']"))
util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Entrant",
ylab="Forfeit Threshold")

44

Forfeit Threshold

[I I I I
20 40 60 80 100

Entrant
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_entrants,
function(n) pasteO('betas[', n,']"'))
util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Entrant",
ylab="Forfeit Scale")

45

Forfeit Scale

[I I I I
20 40 60 80 100

Entrant

For example posterior inferences of the forfeit thresholds for entrants 37 and 38 both concen-
trate on negative values.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

e <- 37

name <- pasteO('kappas[', e, ']1")

util$plot_expectand_pushforward(samples3[[name]], 20,
display_name="Forfeit Threshold",
main=paste('Entrant', e))

e <- 38

name <- pasteO('kappas([', e, ']")

util$plot_expectand_pushforward(samples3[[name]], 20,
display_name="Forfeit Threshold",

main=paste('Entrant', e))

46

Entrant 37 Entrant 38

Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width

-8 -2 4 -8 -2 4
Forfeit Threshol Forfeit Threshol

Both of these entrants forfeited every race they entered.

summarize entrant <- function(e) {
N <- N_entrant_f_races[e] + N_entrant_dnf races[e]
Nf <- N_entrant f races[e]
Ndnf <- N_entrant_dnf_races/[e]

cat(sprintf ("Entrant %i\n", e))
if (N > 1)

cat(sprintf(" %i total entrances\n", N))
else

cat(sprintf (" %i total entrance\n", N))

if (Nf > 1)

cat(sprintf(" %i finishes (%.1£%%)\n", Nf, 100 * Nf / N))
else if (Nf == 1)

cat(sprintf (" %i finish (%.1£f%%)\n", Nf, 100 * Nf / N))

if (Ndnf > 1)

cat(sprintf(” %i forfeits (%.1£f%%)\n", Ndnf, 100 * Ndnf / N))
else if (Ndnf == 1)

cat(sprintf (" %i forfeit (%.1£f%%)\n", Ndnf, 100 * Ndnf / N))

47

summarize entrant (37)

Entrant 37
2 total entrances
2 forfeits (100.0%)

summarize entrant (38)

Entrant 38
2 total entrances
2 forfeits (100.0%)

On the other hand posterior inferences of the forfeit threshold for entrant 65 concentrates on
positive values.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

e <- 65

name <- pasteO('kappas[', e, ']")

util$plot_expectand_pushforward(samples3[[name]], 20,
display_name="Forfeit Threshold",
main=paste('Entrant', e))

48

Entrant 65

Estimated Bin
Probabilities / Bin Width

Forfeit Threshold
This entrant forfeited only once out of 64 total entrances.

summarize_entrant (e)

Entrant 65
64 total entrances
63 finishes (98.4%)
1 forfeit (1.6%)

Moreover that forfeit occurred for a particularly difficult seed, pushing the consistent forfeit
threshold behaviors to larger values.

dnf races <- c()
for (r in 1:data$N_races) {
if (data$race N_entrants_dnf[r] == 0) next
idxs <- data$race_dnf_start_idxs[r] :data$race_dnf_end_idxs[r]
if (e %in), data$race_entrant_dnf_idxs[idxs])
dnf_races <- c(dnf_races, r)

name <- pasteO('difficulties[', dnf_races([1], ']')

49

util$plot_expectand_pushforward(samples3[[name]], 40, flim=c(-1, 1),
display_name="Seed Difficulty",
main=paste('Race', dnf_races[1]))

Race 13

Estimated Bin
Probabilities / Bin Width

I I I I
-1.0 -0.5 0.0 0.5 1.C

Seed Difficulty

Finally the posterior inferences of the forfeit threshold for entrant 44 mostly concentrates on
values between 0 and 1.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

e <- 44

name <- pasteO('kappas[', e, ']")

util$plot_expectand_pushforward(samples3[[name]], 20,
display_name="Forfeit Threshold",
main=paste('Entrant', e))

50

Entrant 44

Estimated Bin
Probabilities / Bin Width

Forfeit Threshold

While entrant 44 finishes most of their entrances forfeits are not uncommon.

summarize_ entrant(e)

Entrant 44
71 total entrances
56 finishes (78.9%)
15 forfeits (21.1%)

This higher propensity to forfeit suppresses larger values of the forfeit threshold.

Overall our posterior inferences for the forfeit behavior are reasonable, but the relative scarcity
of forfeits prevents us from resolving that behavior with too much precision.

4.4 Model 4

A natural extension of the current model is to couple the behavior across seeds and entrants,
allowing data to be shared and reducing inferential uncertainties especially for races and en-
trants with few entrances to inform them directly. In particular if our domain expertise about
these behaviors is exchangeable then we can couple them together with hierarchical models. As

o1

a side benefit we can also use the inferred hierarchical population behavior to make inferences
and predictions about new, hypothetical seeds and entrants.

Because the MapRando version distinguishes some seeds from each other, however, not all of
the seed difficulties are exchangeable. That said we don’t have any information to discrim-
inate between the seeds within a version, suggesting a conditional exchangeabilty. In other
words we can couple the seed difficulties within each MapRando version together into separate
hierarchical models.

For programmatic convenience we’ll just need to convert the version numbers into sequential
indices.

uniq_versions <- unique(race_info$versions)

data$N_versions <- length(uniq_versions)

data$version_idxs <- as.numeric(factor(race_info$versions,
levels=uniq_versions,
labels=1:data$N_versions))

On the other hand we don’t have any prior information capable of discriminating between
the entrants, at least not without doing additional research into their experience with Super
Metroid® in general and MapRando in particular. Consequently all of the entrant behaviors
are exchangeable with each other and can be captured within a single hierarchy. For simplicity
I will couple only the entrant skills together, leaving the heterogeneous entrant forfeit behaviors
independent of each other.

Because the seed difficulties and entrant skills are modeled with one-dimensional, and uncon-
strained, real values we can reach for the standard normal hierarchical model. The last step we
then need in order to fully define the model is a parameterization of the individual parameters
in each hierarchy. Here I will use a monolithic non-centered parameterization for all of the
hierarchies and hope that the large number of seeds and entrants results in strong enough
regularization to suppress any problematic degeneracies. In the worst case our computational
diagnostics will indicate if we need to consider more sophisticated parameterizations.

fit <- stan(file="stan_programs/model4.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Fortunately we don’t see any of the tell-tale signs of problematic hierarchical geometries, such
as divergences and E-FMI warnings.

diagnostics4 <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics4)

02

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples4 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples4,
c('gamma',
'eta_difficulties',
'tau_difficulties',
'eta_skills',
'tau_skills',
'kappas', 'betas',
'psi'),
check_arrays=TRUE)
util$summarize_expectand_diagnostics(base_samples)

The expectands gamma, tau_difficulties[6], eta_skills[4],
eta_skills[5], eta_skills[12], eta_skills[16], eta_skills[17],
eta_skills[18], eta_skills[24], eta_skills[29], eta_skills[44],
eta_skills[45], eta_skills[58], eta_skills[60], eta_skills[65],
eta_skills[70], eta_skills[90], eta_skills[91], eta_skills[93],
eta_skills[94], eta_skills[95], eta_skills[96], eta_skills[100],
eta_skills[105], kappas[44], kappas[86], kappas[94], kappas[98]
triggered diagnostic warnings.

The expectands gamma, tau_difficulties[6], eta_skills[4],
eta_skills[5], eta_skills[12], eta_skills[16], eta_skills[17],
eta_skills[18], eta_skills[24], eta_skills[29], eta_skills[44],
eta_skills[45], eta_skills[58], eta_skills[60], eta_skills[65],
eta_skills[70], eta_skills[90], eta_skills[91], eta_skills[93],
eta_skills[94], eta_skills[95], eta skills[96], eta_skills[100],
eta_skills[105], kappas[44] triggered hat{ESS} warnings.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

In fact the empirical effective sample sizes are consistently larger, and hence the auto-
correlations consistently weaker, than before! This suggests that the hierarchical coupling is
indeed reducing the posterior uncertainties and improving the overall posterior geometry.

base_samples <- util$filter_expectands(samples3,
c('gamma',

93

'difficulties', 'skills',
'kappas', 'betas',
'psi'),
check_arrays=TRUE)
min_ess_hats3 <- util$compute_min_ess_hats(base_samples)

base_samples <- util$filter_expectands(samples4,
c('gamma',
'difficulties', 'skills',
'kappas', 'betas',
'psi'),
check_arrays=TRUE)
min_ess_hats4 <- util$compute_min_ess_hats(base_samples)

par (mfrow=c(1, 1), mar=c(5, 5, 3, 1))

plot(min_ess_hats3, min_ess_hats4, col=util$c_dark, pch=16,
main=paste0("Smallest Empirical Effective Sample Size\n",
"Across All Markov Chains For Each Expectand"),
xlab="Model 3", xlim=c(0, 1100),
ylab="Model 4", ylim=c(0, 1100))
abline(a=0, b=1, col="#DDDDDD", 1lty=3, lwd=3)

54

Smallest Empirical Effective Sample Size
Across All Markov Chains For Each Expectat

1000 —
800 —

600 —

Model 4

400 —

200

0 I I I I I
0 200 400 600 800 1000

Model 3

A review of our visual retrodictive checks doesn’t show any indications that the introduction
of the hierarchical coupling compromised the adequacy of our modeling assumptions.

par (mfrow=c(1, 1), mar=c(5, 5, 3, 1))
util$plot_hist_quantiles(samples4, 'race_entrant_f_times_pred',
baseline_values=data$race_entrant_f_times,

xlab="Finish Time (s)",
main="All Races, All Entrants")

55

All Races, All Entrants

400 —

300

200

Counts

100 —

I I
5000 10000 15000 20000

Finish Time (s)

par (mfrow=c(1, 1), mar=c(5, 5, 3, 1))

names <- sapply(l:data$N_races,
function(r) pasteO('race N_entrants_dnf_pred[', r,']'))
util$plot_disc_pushforward_quantiles(samples4, names,
baseline_values=data$race_N_entrants_dnf,
residual=TRUE,
xlab="Race",
ylab="N_dnf")

56

N_dnf
o
e

-2 I I l] I
]
o I I I
50 100 150
Race

par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))

for (r in c(7, 33, 77, 140)) {
idxs <- data$race_f_start_idxs[r]:data$race_f_end_ idxs[r]
names <- sapply(idxs, function(n) pasteO('race_entrant_f_times_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples4, names)
util$plot_hist_quantiles(filtered_samples, 'race_entrant_f_times_pred',
1000, 11000, 1000,
baseline_values=data$race_entrant f_ times[idxs],
xlab="Finish Time (s)",
main=pasteO("Race ", r, ", All Entrants"))

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 79 predictive values (0.2}) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 87 predictive values (0.1%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 5 predictive values (0.0%) fell above the binning.

57

Race 7, All Entrants Race 33, All Entrants

5
g 4 g 6
E 3 9 E s
o 2 o
© 1 I O 2 ..
0 0
2000 6000 2000 6000
Finish Time (s) Finish Time (s)
Race 77, All Entrants Race 140, All Entrant:
20
10
g s g 15
S 6 =} 10
5 4 § s
0 T 0 1
2000 6000 2000 6000
Finish Time (s) Finish Time (s)

par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))

for (e in c(19, 31, 73, 93)) {
idxs <- which(data$race_entrant_f_idxs == e)
names <- sapply(idxs, function(n) pasteO('race_entrant_f_times_pred[', n, ']'))
filtered_samples <- util$filter_expectands(samples4, names)
util$plot_hist_quantiles(filtered_samples, 'race_entrant_f_times_pred',
1000, 12000, 1000,
baseline_values=data$race_entrant f times[idxs],
xlab="Finish Time (s)",
main=paste0("All Races, Entrant ", e))

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 5 predictive values (0.0%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 2 predictive values (0.0%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 9 predictive values (0.0%) fell above the binning.

58

All Races, Entrant 19 All Races, Entrant 31

6 4
])]
E 4 g 3 I
3 ol |x 3 2
o 2 » @) 1 0 i
0 0
2000 8000 2000 8000
Finish Time (s) Finish Time (s)
All Races, Entrant 73 All Races, Entrant 92
g 6 2
5 4 u 5
(@] . (@]
O 2 B O
0
2000 8000 2000 8000
Finish Time (s) Finish Time (s)

Now we can explore the posterior inferences for not just the individual behaviors but also the
hierarchical populations from which those behaviors are, at least mathematically, drawn.

FEach MapRando version defines a separate hierarchical population and, unsurprisingly, the
inferred population behavior is most precise for the later versions that have been played the

most.

for (v in 1:data$N_versioms) {
par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

races <- which(data$version_idxs == v)
names <- sapply(races, function(r) pasteO('difficulties[', r,']"'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Race",
xticklabs=races,
ylab="Difficulty")

name <- pasteO('tau_difficulties[', v, ']")

util$plot_expectand_pushforward(samples4[[namel], 30, flim=c(0, 1.1),
display_name="tau_difficulties",
main=paste("Version", uniq_versions[v]))

59

Version 105

YIPIM ulg / senijiqeqoid

ulg parewnss
O o Lo o L0 o Ko}
m ® § « o o O
o o o o o o o

Anoyia

0.0 0.6

tau difficulties

Race

Version 108

0.00

YIPIM\ uig / senijiqeqoid
uig perewns3

Lo o Lo
o — —
F 9 7

|
Anayia

-0.20

0.0 0.6

tau difficulties

Race

60

Version 109

0.65

UIPIM Ulg / Saniligedqoid
uig parewns

o Lo o L0

© v u I

o o o o
Anoyia

0.40

0.0 0.6

tau difficulties

Race

Version 111

YIPIAA uig / senljigeqoid
uig parewins3

I
0

_
™ o
o o

I [
N o
o o

0.6
0.5
0.4

Anayia

0.0 0.6

6 9 13

tau difficulties

Race

61

Version 112

0.6
t
0.4 -
t“* i + k=
=
0.2 c
N +++ | +++r+*w @ 5
S It T L5
£ AT EE
AR
-0.2 t w 'c
i 1it S
+ —_
044 .
t
-0.6
17 44 71 0.0 0.6
Race tau_difficulties
Version 113
04 _
0.2 | J w ! c =
> mﬂ*wu g'%
E 0.0 4 U ’Mwﬁ éﬁ
A i s =
- * HWWM =
027 i g
Rl . -
04 't
I
88 133 183 0.0 0.6
Race tau_difficulties

Subject to the posterior uncertainties all of the version population behaviors are consistent

62

with each other. For example both versions 112 and 113 strongly suppress seed difficulty
magnitudes above
2Tdifficulty ~ 047

implying range of proportional changes to the baseline finish time between
exp(—0.4) ~ 0.67

and
exp(+0.4) ~ 1.49.

Interestingly the entrant skills exhibit similar regularization, with the population scale concen-
trating just under 0.3.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

names <- sapply(l:data$N_entrants,
function(n) pasteO('skills[', n,']'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Entrant",
ylab="Skill")

util$plot_expectand_pushforward(samples4[['tau_skills']], 20,
display_name="tau_skills")

0.6 —
| t
0.4 —&: %ﬁ ot .
+ e
2 5
il 14 m .S
_ ool t++ %9
Z ‘0-27’” "h | gé
a1 B3
AR 8
0.6 —’* -
-0.8 —
T TTTT
20 60 0.20 0.28
Entrant tau_skills

63

4.5 Inferential Comparison

Before applying our posterior inferences to make useful statements about the entrants and
their behavior in future races let’s pause and examine the impact our model development has
had on our posterior inferences.

4.5.1 Log Baseline

To start let’s look at the parameter + which, once exponentiated, sets the baseline finish
time.

Interestingly changing the observational model doesn’t seem to have strongly impacted v, at
least within the resolution of our Markov chain Monte Carlo estimators.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samplesi[['gamma']], 20,
flim=c(8.45, 8.8),
display_name="gamma",
col=util$c_light)

text(8.525, 10, "Model 1", col=util$c_light)

util$plot_expectand_pushforward(samples2[['gamma']], 20,
flim=c(8.45, 8.8),
border="#BBBBBB88", add=TRUE)

text(8.675, 10, "Model 2", col=util$c_dark)

64

Model 2

Estimated Bin
Probabilities / Bin Width

I I I I I I I
8.45 8.55 8.65 8.75

gamma

On the other hand incorporating forfeits results in a substantial shift of the entire marginal
posterior distribution up to larger values, implying longer baseline finish times. This makes
sense because without accounting for forfeits the observed finish times are biased towards more
optimistic outcomes.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples2[['gamma']], 20,
flim=c(8.45, 8.8),
display_name="gamma",
col=util$c_light)

text(8.525, 10, "Model 2", col=util$c_light)

util$plot_expectand_pushforward(samples3[['gamma']], 20,
flim=c(8.45, 8.8),
border="#BBBBBB88", add=TRUE)

text (8.7, 10, "Model 3", col=util$c_dark)

65

Model 3

Estimated Bin
Probabilities / Bin Width

I I I I I I I
8.45 8.55 8.65 8.75

gamma

The introduction of the seed difficulty and entrant skill hierarchies has no impact on smaller
values of v but it does suppress larger values, giving a narrower marginal posterior distribu-
tion. This is just a manifestation of the smaller uncertainties that appropriately coupling the
individuals behaviors together can give.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[['gamma']], 20,
flim=c(8.45, 8.8),
ylim=c(0, 15),
display_name="gamma",
col=util$c_light)
text(8.55, 10, "Model 3", col=util$c_light)

util$plot_expectand_pushforward(samples4[['gamma']], 20,
flim=c(8.45, 8.8),
border="#BBBBBB838", add=TRUE)

text (8.7, 10, "Model 4", col=util$c_dark)

66

Model 4

Estimated Bin
Probabilities / Bin Width

8.45 8.55 8.65 8.75

gamma

4.5.2 Entrant 29 Skill

Now let’s dig into posterior inferences for some entrants with particularly extreme observed
behaviors that will hopefully emphasize the impact of our model improvements.

For example the record of entrant 29 features lots of entrances and only a single forfeit. Con-
sequently we might naively expect the introduction of forfeits and the entrant skill hierarchy
to have less impact on inferences for the skill parameter of entrant 29.

e <- 29
summarize_ entrant(e)

Entrant 29
68 total entrances
67 finishes (98.5%)
1 forfeit (1.5%)

name <- pasteO('skills[', e,']"')
xname <- pasteO('Entrant ', e, ' Skill')

67

Transitioning from a gamma to inverse gamma observational model seems to yield a very slight
shift of the marginal skill posterior distribution to smaller values. On the other hand because
this shift is largely enveloped by the Markov chain Monte Carlo errors it could also just be a
computational artifact.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samplesl[[namel], 20,
f1im=c(0.25, 0.6),
display_name=xname,
col=util$c_light)

text(0.49, 10, "Model 1", col=util$c_light)

util$plot_expectand_pushforward(samples2[[namel], 20,
flim=c(0.25, 0.6),
border="#BBBBBB88", add=TRUE)

text (0.355, 10, "Model 2", col=util$c_dark)

Model

Estimated Bin
Probabilities / Bin Width

I I I I I I I
0.25 0.35 0.45 0.55

Entrant 29 Skill

Interestingly the introduction of forfeits into the model has a much stronger impact on the
marginal skill posterior distribution, shifting it up to larger values. Even though entrant 29
rarely forfeited the ignorance of forfeits can allow data from other entrants to bias inferences
for common parameters like -y, which then bias inferences for all entrant skills.

68

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples2[[namel], 20,
flim=c(0.25, 0.6),
display_name=xname,
col=util$c_light)

text (0.355, 10, "Model 2", col=util$c_light)

util$plot_expectand_pushforward(samples3[[namel], 20,
flim=c(0.25, 0.6),
border="#BBBBBB88", add=TRUE)

text (0.5, 10, "Model 3", col=util$c_dark)

Model 3

Estimated Bin
Probabilities / Bin Width

I I I I I I I
0.25 0.35 0.45 0.55

Entrant 29 Skill
The introduction of the skill hierarchy has a similar, albeit weaker, influence on the entrant 29

skill parameter as it did on . Larger values are suppressed, narrowing the marginal posterior
distribution.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_expectand_pushforward(samples3[[namel], 20,

flim=c(0.25, 0.6),
ylim=c(0, 14),

69

display_name=xname,
col=util$c_light)
text(0.49, 10, "Model 3", col=util$c_light)

util$plot_expectand_pushforward(samples4[[namel]], 20,
flim=c(0.25, 0.6),
border="#BBBBBB88", add=TRUE)

text(0.36, 10, "Model 4", col=util$c_dark)

Model 4

Estimated Bin
Probabilities / Bin Width

I I I I I I I
0.25 0.35 0.45 0.55

Entrant 29 Skill

4.5.3 Entrant 44 Skill

Let’s contrast these changes with those for the skill parameter of entrant 44, who also entered
into many races but forfeited at a much higher rate than entrant 29.

e <- 44
summarize_ entrant(e)

Entrant 44
71 total entrances
56 finishes (78.9%)
15 forfeits (21.1%)

70

name <- pasteO('skills[', e,']")
xname <- pasteO('Entrant ', e, ' Skill')

Again the tweak of the observational model has a negligible impact on the marginal posterior
inferences.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samplesi[[name]], 20,
flim=c(0, 0.4),
display_name=xname,
col=util$c_light)

text(0.12, 10, "Model 1", col=util$c_light)

util$plot_expectand_pushforward(samples2[[namel], 20,
flim=c(0, 0.4),
border="#BBBBBB88", add=TRUE)

text(0.24, 10, "Model 2", col=util$c_dark)

odel 2

Estimated Bin
Probabilities / Bin Width

I I I I
0.0 0.1 0.2 0.3 0.4

Entrant 44 Skill

Somewhat surprisingly incorporating forfeits shifts the entrant 44 skill parameter to larger
values!

71

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples2[[namel], 20,
flim=c(0, 0.4),
display_name=xname,
col=util$c_light)

text(0.12, 10, "Model 2", col=util$c_light)

util$plot_expectand_pushforward(samples3[[namel], 20,
flim=c(0, 0.4),
border="#BBBBBB88", add=TRUE)

text (0.255, 10, "Model 3", col=util$c_dark)

odel 3

Estimated Bin
Probabilities / Bin Width

I I I I
0.0 0.1 0.2 0.3 0.4

Entrant 44 Skill

This suggests that entrant 44 forfeiting for only particularly difficult races. Indeed examin-
ing the seed difficulty inferences it appears that entrant 44 has largely forfeited only when
confronted with difficult seeds.

f_races <- c()
for (r in 1:data$N_races) {
idxs <- data$race_f_start_idxs[r]:data$race_f_end_idxs[r]
if (e %in), data$race_entrant_f_idxs[idxs])
f _races <- c(f_races, r)

72

dnf races <- c()
for (r in 1:data$N_races) {
if (data$race_N_entrants_dnf[r] == 0) next
idxs <- data$race_dnf_start_idxs[r] :data$race_dnf_end_idxs[r]
if (e %in% data$race_entrant_dnf_ idxs[idxs])
dnf_races <- c(dnf_races, r)

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

names <- sapply(f_races, function(r) pasteO('difficulties[', r,']"'))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Race",
xticklabs=f_races,
ylab="Difficulty",
display_ylim=c(-0.6, 0.6),
main="Entrant 44 Finished")

names <- sapply(dnf_races, function(r) pasteO('difficulties[', r,']"))
util$plot_disc_pushforward_quantiles(samples4, names,
xlab="Race",
xticklabs=dnf_races,
ylab="Difficulty",
display_ylim=c(-0.6, 0.6),
main="Entrant 44 Forfeited")

73

O!%n'gant 44 Finishe OI_EéﬂLant 44 Forfeite

t
0.4 — f 0.4 — i
0.2 024t t ¥
2 il iz LT
3 oot | | 2 oot L1
N AU -
-0.2 *Ph} {1 -0.2
fIm
t d{
0.4~ -0.4
~0.6 0.6 =TT
20 121 186 44 90 173
Race Race

Because the entrant 44 skill parameter concentrates on smaller values than the entrant 29
skill parameter the influence of the hierarchical coupling isn’t as pronounced. Here only a
small slice of larger values are suppressed and the marginal posterior distribution tightens

only slightly.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[[namel]], 20,
flim=c(0, 0.4),
ylim=c(0, 13),
display_name=xname,
col=util$c_light)

text(0.12, 10, "Model 3", col=util$c_light)

util$plot_expectand_pushforward(samples4[[namel], 20,
£1im=c(0, 0.4),
border="#BBBBBB88", add=TRUE)

text(0.26, 10, "Model 4", col=util$c_dark)

74

odel 4

Estimated Bin
Probabilities / Bin Width

I I I I
0.0 0.1 0.2 0.3 0.4

Entrant 44 Skill

4.5.4 Entrant 83 Skill

Lastly let’s take a look at an entrant with only a few race entrances. In particular entrant 83
has only five entrances and almost half of them are forfeits.

e <- 83
summarize_entrant (e)

Entrant 83
5 total entrances
3 finishes (60.0%)
2 forfeits (40.0%)

name <- pasteO('skills[', e,']")
xname <- pasteO('Entrant ', e, ' Skill')

Once again the transition from gamma to inverse gamma observational models has little impact
on the marginal skill inferences.

75

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samplesi[[namel], 20,
flim=c(-0.6, 0.1),
display_name=xname,
col=util$c_light)

text(-0.4, 3, "Model 1", col=util$c_light)

util$plot_expectand_pushforward(samples2[[namel], 20,
flim=c(-0.6, 0.1),
border="#BBBBBB88", add=TRUE)

text(-0.075, 3, "Model 2", col=util$c_dark)

Model 2

Estimated Bin
Probabilities / Bin Width

I I I I I I I
-0.6 -0.4 -0.2 0.0 0.1

Entrant 83 Skill

Incorporating forfeits pushes the skill marginal posterior distribution to larger values, but only
slightly.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_expectand_pushforward(samples2[[namel], 20,
flim=c(-0.6, 0.1),

display_name=xname,
col=util$c_light)

76

text(-0.4, 3, "Model 2", col=util$c_light)

util$plot_expectand_pushforward(samples3[[namel], 20,
flim=c(-0.6, 0.1),
border="#BBBBBB88", add=TRUE)

text(-0.05, 3, "Model 3", col=util$c_dark)

Model 3

Estimated Bin
Probabilities / Bin Width

I I I I I I I
-0.6 -0.4 -0.2 0.0 0.1

Entrant 83 Skill

It’s hard to say if the hierarchical coupling has any substantial impact. There is perhaps a
very weak suppression of more negative skill values, but that trend is also within the span of
the Markov chain Monte Carlo estimator errors.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3[[namel], 20,
flim=c(-0.6, 0.1),
ylim=c(0, 5.5),
display_name=xname,
col=util$c_light)
text(-0.4, 3, "Model 3", col=util$c_light)

util$plot_expectand_pushforward(samples4[[name]], 20,
flim=c(-0.6, 0.1),

7

border="#BBBBBB88", add=TRUE)
text(-0.05, 3, "Model 4", col=util$c_dark)

odel 4

Estimated Bin
Probabilities / Bin Width

I I I I I I I
-0.6 -0.4 -0.2 0.0 0.1

Entrant 83 Skill

In hindsight we shouldn’t expect any substantial impact from the introduction of the hierar-
chical modeling components given that the initial posterior inferences for the entrant 83 skill
parameter already concentrated with the inferred span of the hierarchical population model.

4.6 Possible Model Expansions

At this point our model appears to be adequate, at least within the scope of the summary
statistics that we considered. In particular because we only spot checked the retrodictive
behavior for a few individual races and entrants there is plenty of room for subtle model
inadequacies to hide. Moreover the available domain expertise suggests plenty of possible
model improvements that we could investigate more carefully if we had the time, need, or
both.

Attempting to implement any of these model expansions would be a useful exercise for any
enterprising readers.

78

4.6.1 Idiosyncratic Entrants

Given that we have already argued that our domain expertise about the entrant behaviors is
exchangeable there is nothing preventing us from hierarchically modeling the variation in not
only entrant skill but also entrant forfeit behaviors.

If entrant skill, forfeit threshold, and forfeit scale all varied independently then implementing
this model would be mostly straightforward, with some possible challenges in accommodating
the positivity constraint on the forfeit scale. There’s no immediate reason, however, why the
heterogeneity in these parameters wouldn’t be coupled together. For example entrants with
higher skills might also tend to have higher forfeit thresholds and vice versa. In this case we
would need to consider a multivariate hierarchical population model.

This is the inevitable challenge with hierarchical modeling in practice. Once we identify which
behaviors are heterogeneous and exchangeable we still need to determine how those behaviors
could vary.

4.6.2 Transcending Normal Population Models

Speaking of hierarchies, we are in a somewhat privileged position with the large number of
entrants and seeds in our data set. This abundance of contexts might allow us to resolve more
sophisticated hierarchical population behavior beyond the normal population model that we
have assumed. For example we could consider a Student’s ¢ population model where we have
to infer not only the breadth of the population but also the precise shape of the population
tails.

This more flexible hierarchical population model would allow our inferences to better accom-
modate sparsity, strongly regularizing most of the seed difficulties or entrant skills towards
zero while allowing the more extreme behaviors to be more weakly regularized.

4.6.3 Self-lmprovement

When exploring the time-dependence of the seed difficulties we briefly considered time-
dependent entrant skills before accepting the evolving MapRando version as the most likely
explanation. That said there’s no reason why we couldn’t expand our model to allow for
time-dependent entrant skills, if only to see if we could resolve any substantial dependencies
with the data we have collected.

The main challenge with implementing time-dependent skills is determining how exactly to
model how entrants improve and hence what kinds of time-dependencies we should prioritize.
For example if learning scales with the number of MapRando games played, and entrant
interest in the game is not uniform in time, then modeling skill as a function of race date-time

79

might not be the most best path. Instead it might be more productive to allow entrant skills
to depend on cumulative participation or even something else entirely.

We still then have to determine the possible functional relationships between skill and the
appropriate evolution metric. We could, for instance, simply assume a linear relationship
for simplicity or consider more sophisticated relationships that allow for more complicated
behaviors such as saturation.

4.6.4 Variable Variability

Throughout our model development have assumed a common 1 across all races, even as the
randomization seeds change. That said sometimes the MapRando randomization logic results
in particularly ambiguous progression paths; entrants taking the correct path first will tend
to finish especially fast while those who explore the incorrect paths will tend to finish later,
resulting in especially large variability. This is especially true if a seed allows for unintended
sequence breaks of which only the more skilled entrants can take advantage. On the other
hand some seeds result in progression paths that are easier to predict which narrows the range
of possible finish times.

One way to account for this heterogeneity is to allow v to vary across seeds. We could even
model the 1 parameters hierarchically to help regularize inferences for races with only a few
entrants.

Before expanding the model, however, we would first want to see if we can identify any conse-
quences of this behavior in new posterior retrodictive checks. For example we could look at the
finish time histograms for more races to see if the observed behavior is wider or narrow than
the posterior predictive behavior. We could also try to engineer summary statistics that are
directly sensitive to the variability, such as the ratio of the empirical variance to the squared
empirical mean within each race and even statistics that are sensitive to heterogeneity in those
individual race statistics.

At the same time entrants who are more experienced with MapRando games, especially the
underlying logic of the map randomization, can often identify the correct progression paths
quickly and avoid wasting time exploring dead ends. This suggests that ¢ could also vary
across entrants. The study of this heterogeneity would proceed similarly to the above study
of seed heterogeneity, only separating the summary statistics by individual entrants instead of
individual races.

5 Actionable Insights

Although it’s easy to become distracted by all of the directions we can take our last model we
don’t want to forget all of the powerful things that we can already do with it. In this section
we’ll apply our posterior inferences to a few applications that might arise in actual practice.

80

5.1 Ranking Entrants

A common objective of races is to construct leader boards where entrants are ranked in order of
their performance. For example https://racetime.gg/smr uses a heuristic, iterative system
to assign points to entrants based on their performance in each race and then uses those points
to determine a dynamic leader board. The top nine entrants as of August 3rd, 2024 are shown
in Table 1.

Table 1: The website https://racetime.gg/smr ranks entrants based on points earned during
each race.

Rank 1 2 3 4 5 6 7 8 9
Entrant Index 70 105 29 100 18 91 60 65 4

Our posterior distribution can also be used to rank the entrants by their inferred skills.

Mathematically any configuration of entrant skills

Nen rants
(Askill,lv vy Agkill e +++ 3 Askill, N) € (Aggn) =

entrants

implies a unique ranking

(T N N)ER

entrants

where entrants are ordered by their their individual skills,

Askillr; > o+ > Akillyr, > - > Agkdllyry

entrants

This in fact defines a bijective function from the space of entrant skills to the space R of the
N, ! possible orderings of the N, entrants,

entrants* ntrants

Nen rants
0: (Aggy) ™™ — R.

Pushing forward our posterior distribution along this function gives a posterior distribution o, m
that quantifies our uncertainty about the possible entrant rankings. The only challenge is that
the space of ranking R is massive and difficult to navigate. In particular it’s not immediately
clear how we can construct practical point summaries of this rank posterior distribution for
applications like leader boards.

For example intuitively we might be interested in point estimates that quantify the centrality
of the rank posterior distribution in some way. Because the space of rankings is discrete
each rank will in general be allocated non-zero probability and we might consider a modal
ranking,

r* = argmax o, m({r}).
reR

81

https://racetime.gg/smr/leaderboards

Unfortunately even if a unique mode exists actually finding it will typically be intractable. Not
only can we not compute the atomic allocations o,7({r}) in closed form but also exhaustively
searching through all N, ..«;! elements will almost always be too expensive and we have no
gradient information to guide a more efficient search.

In analogy to a posterior mean we might consider a distance function d : R x R — R and
then define a point summary that minimizes the expected distance,

pr = argmin £, [d(-,7)].
reR
Conveniently there are a variety of useful distance functions on R that we could use here.
and the expectation values can be readily estimated with Markov chain Monte Carlo. The
minimization over all possible candidate rankings r € R, however, suffers from the same
problems as above.

Because of these computational issues we will usually need to appeal to more heuristic methods
in practice. For instance we can always rank the entrants by the posterior expectation values
of their individual skills.

expected_skill <- function(e) {
util$ensemble_mcmc_est (samplesd[[pasteO('skills[', e, ']1')]11)[1]
}

expected_skills <- sapply(l:data$N_entrants,
function(e) expected_skill(e))

ranked_entrants <- sort(expected_skills, index.return=TRUE)$ix
for (r in 1:9) {

cat (sprintf ("Rank %i: Entrant %i\n",
r, ranked_entrants[data$N_entrants + 1 - r]))

if (r == 9) cat("...")

}

Rank 1: Entrant 70
Rank 2: Entrant 29
Rank 3: Entrant 18
Rank 4: Entrant 105
Rank 5: Entrant 100
Rank 6: Entrant 91
Rank 7: Entrant 60
Rank 8: Entrant 65
Rank 9: Entrant 24

82

Interestingly the top eight entrants in this heuristic ranking are the same as the top eight
entrants in the official https://racetime.gg/smr leader boards. That said the ordering of
positions two through five are different.

rank <- 1:9
post_mean_ranking <- rev(tail(ranked_entrants, 9))

racetime_ranking <- c(70, 105, 29, 100, 18, 91, 60, 65, 4)

df <- data.frame(rank, post_mean_ranking, racetime_ranking)
names(df) <- c("Rank", "Posterior Mean Ranking", "racetime.gg Ranking")

print(df, row.names=FALSE)

Rank Posterior Mean Ranking racetime.gg Ranking

1 70 70
2 29 105
3 18 29
4 105 100
5 100 18
6 91 91
7 60 60
8 65 65
9 24 4

Inconsistent rankings is not at all surprising given our posterior uncertainties. For example
even though entrant 70 exhibits a higher expected skill than entrant 29 our inferential uncer-
tainties are not inconsistent with the exact skill of entrant 29 actually surpassing the exact
skill of entrant 70.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

e <- ranked_entrants[data$N_entrants + 1 - 3]
name <- pasteO('skills[', e,']")

util$plot_expectand_pushforward(samples4[[name]], 25,
flim=c(0.265, 0.65),
ylim=c(0, 15),
display_name="Skill",
col=util$c_light)

text(0.36, 11.5, paste("Rank 3\nEntrant", e), col=util$c_light)

e <- ranked entrants[data$N_entrants + 1 - 2]

83

name <- pasteO('skills[', e,']")

util$plot_expectand_pushforward(samples4[[namel], 25,
flim=c(0.25, 0.65),
col=util$c_mid,
border="#BBBBBB38",
add=TRUE)

text(0.415, 14.25, paste("Rank 2\nEntrant", e), col=util$c_mid)

e <- ranked_entrants[data$N_entrants + 1 - 1]
name <- pasteO('skills[', e,']")

util$plot_expectand_pushforward(samples4[[namel]], 25,
flim=c(0.25, 0.65),
col=util$c_dark,
border="#BBBBBB38",
add=TRUE)

text(0.485, 11.5, paste("Rank 1\nEntrant", e), col=util$c_dark)

Rank 2
Entrant 29

Rank 1
ntrant 70

Estimated Bin
Probabilities / Bin Width

I I I I
0.3 0.4 0.5 0.6

Skill

If we want to compare only two entrants at a time then instead of comparing their expected
skills we can compute the posterior probability that one skill surpasses the other. In particular
this latter comparison accounts for inferential coupling between the two skill parameters.

84

el <- ranked entrants[data$N_entrants + 1 - 1]

e2 <- ranked_entrants[data$N_entrants + 1 - 2]

var_repl <- list('sl' = pasteO('skills[', el,']"),
's2' = pasteO('skills[', e2,']'))

p_est <-
util$implicit_subset_prob(samples4,
function(sl, s2) sl > s2,
var_repl)

format_string <- pasteO("Posterior probability that entrant %i > ",
"entrant %i skill = %.3f +/- %.3f.")
cat (sprintf (format_string, el, e2, p_est[1], 2 * p_est[2]))

Posterior probability that entrant 70 > entrant 29 skill = 0.941 +/- 0.008.

These relative comparisons can also be used to construct another heuristic ranking. For ex-
ample we could compute the probability that the skill of each entrant is larger than all other
entrants and assign first place based on the highest probability. Then we could compute the
probability that the skill of each remaining entrant is larger than all of the other remaining
entrants and assign second place based on the highest of these probabilities. Finally we could
fill out all of the rankings by iterating this procedure until only one entrant is left to occupy
last place.

skill comp <- function(active_skill, other_skills) {
pairwise_comps <- sapply(other_skills,
function(other_skill)
active_skill > other_skill)
as.numeric(Reduce("&", pairwise_comps))

}

best_entrant <- function(entrant_idxs) {
probs <- c()

for (e in entrant_idxs) {
other_ entrant idxs <- entrant_idxs[-which(entrant idxs == e)]
var_repl <- list('active_skill' pasteO('skills[', e,']"),
'other_skills' = array(sapply(other_entrant_idxs,
function(oe)
paste0('skills[', oe,']'))))

85

prob_est <- util$implicit_subset_prob(samples4,
skill_comp,
var_repl)
probs <- c(probs, prob_est[1])
}

entrant_idxs[which(probs == max(probs))]

}

entrant_idxs <- 1:data$N_entrants
e first <- best_entrant(entrant_idxs)
cat(sprintf ("First Place: Entrant %i", e_first))

First Place: Entrant 70

entrant_idxs <- entrant_idxs[-which(entrant_idxs == e_first)]
e_second <- best entrant(entrant idxs)
cat(sprintf("Second Place: Entrant %i", e_second))

Second Place: Entrant 29

entrant_idxs <- entrant idxs[-which(entrant idxs == e_second)]
e_third <- best_entrant(entrant_idxs)
cat(sprintf ("Third Place: Entrant %i", e_third))

Third Place: Entrant 18

Interestingly this give the same top three as the ranking of entrants by their posterior expected
skills. In general, however, this will not always be the case.

The practical limitations of this approach is that it requires estimating a lot of expectation
values. Moreover if we really wanted to be careful then we would need to ensure that the
Markov chain Monte Carlo error for each probability estimate is smaller than any of the
differences between the probability estimates so that the resulting ranks are not corrupted
by computational artifacts. In practice this might require running more Markov chains than
usual, longer Markov chains than usual, or both.

86

5.2 Predicting Race Outcomes

Another common application is to make predictions about the outcomes of future races, or
even hypothetical races that might never occur. We can use our posterior inferences for the
observed seed and entrants to immediately inform predictions about how existing entrants
would fare if they were able to play previous seeds again. In order to make predictions about
the performance of entirely new entrants or new seeds we will need to take advantage of the
hierarchical population models.

Let’s rerun our last, hierarchical model only with a new generated quantities block where
we simulate posterior predictive finish statuses and finish times for all existing entrants in a
hypothetical race using a new seed in the latest MapRando version.

fit <- stan(file="stan_programs/model5.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Because the generated quantities block of Model 5 will consume pseudo-random number
generate state differently than that of Model 4 there is a chance that the realized Markov
chains will encounter different pathologies. Consequently we’ll need to double check the com-
putational diagnostics. Fortunately no new warnings have arisen.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples,
c('gamma',
'eta_difficulties',
'tau_difficulties',
'eta_skills',
'tau_skills',
'kappas', 'betas',
'psi'),
check_arrays=TRUE)
util$summarize_expectand_diagnostics(base_samples)

87

The expectands gamma, eta_skills[4], eta_skills[18], eta_skills[29],
eta_skills[44], eta_skills[58], eta_skills[60], eta_skills[65],
eta_skills[90], eta_skills[91], eta_skills[100], eta_skills[105],
kappas[6], kappas[44], kappas[94], kappas[98] triggered diagnostic
warnings.

The expectands gamma, eta_skills[4], eta_skills[18], eta_skills[29],
eta_skills[44], eta_skills[58], eta_skills[60], eta_skills[65],
eta_skills[90], eta_skills[91], eta_skills[100], eta_skills[105],
kappas[94] triggered hat{ESS} warnings.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

par (mfrow=c(1, 1), mar=c(5, 5, 2, 1))
min_ess_hats <- util$compute_min_ess_hats(base_samples)
util$plot_line_hist(min_ess_hats, 0, 150, 10, col=util$c_dark,

xlab=pasteO("Smallest Empirical Effective Sample Size\n",
"Across All Markov Chains For Each Expectand"))

Warning in check_bin_containment(bin_min, bin_max, values): 492 values (94.3%)
fell above the binning.

abline(v=100, col="#DDDDDD", 1lty=3, lwd=3)

88

Counts

0 T T T T T 1

0O 20 40 60 80 100 140
Smallest Empirical Effective Sample Size
Across All Markov Chains For Each Expect:

The uses of these predictions are endless.

5.2.1 Single Entrant Predictions

For example some entrants not only live-stream their entrances to their communities but also
allow viewers to make non-monetary over/under bets on their finish time. If we wanted to
take these casual activities a bit too far then we could use our predictions to set a betting line
where both outcomes are equally probable.

Without forfeits the balanced betting line t,,,,;. would be implicitly defined by the condition

7T([07 tgamble)) = 0.5.

In other words y,,1,1c would just be given by the median of the posterior predictive finish time
distribution for the hosting entrant, which we can estimate with Markov chain Monte Carlo.

To be completely fair, however, we need to account for the fact that the hosting entrant might
forfeit. Consequently the relevant condition is actually

7([0, tgamble) > forfeit = 0) = 0.5
7([0, tgample) | forfeit = 0) w(forfeit = 0) = 0.5
([0, tgamble) | forfeit = 0) (1 — m(forfeit = 1)) = 0.5,
or
7([0, tgample) | forfeit = 0) = 0.5

1 — m(forfeit = 1)

89

Fortunately we can readily compute all of these ingredients using our Stan output.

To demonstrate let’s look at entrant 65. First we can compute the probability of forfeit.

e <- 65

name <- pasteO('entrant_statuses_pred[', e, ']')

p_dnf <- util$ensemble_mcmc_est (samples[[name]]) [1]

cat(sprintf ("Probability entrant %i forfeits = %.3f.", e, p_dnf))

Probability entrant 65 forfeits = 0.018.

Because the forfeit probability is so small the balanced probability allocation needed to define

i 1
tgamble 18 Very close to 3.

p_balanced <- 0.5 / (1 - p_dnf)

Averaging the empirical quantiles within each Markov chain provides a consistent estimate of
the exact posterior quantile.

name <- pasteO('entrant_f_times_pred[', e, ']")
t_gamble <- util$ensemble_mcmc_quantile_est (samples[[name]],

c(p_balanced))

cat (sprintf ("t_gamble = %.3f minutes", t_gamble / 60))
t_gamble = 66.923 minutes

5.2.2 Head-to-Head Predictions

We can also predict how two entrants will perform relative to each other in our hypothetical
race. Here we’ll consider entrant 29 racing against entrant 65.

The marginal posterior distribution for the two entrants’ skill parameters overlap quite a bit,
but that of entrant 29 does favor larger values than that of entrant 65.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

e <- 29
name <- pasteO('skills[', e,']")

util$plot_expectand_pushforward(samples[[namel], 25,

90

flim=c(0.15, 0.55),
ylim=c(0, 15),
display_name="Skill",
col=util$c_light)
text(0.42, 14, paste("Entrant", e), col=util$c_light)

e <- 65
name <- pasteO('skills[', e,']")

util$plot_expectand_pushforward(samples[[namel]], 25,
flim=c(0.15, 0.55),
col=util$c_dark,
border="#BBBBBB88",
add=TRUE)

text (0.3, 14, paste("Entrant", e), col=util$c_dark)

Entrant 65

Estimated Bin
Probabilities / Bin Width

I I I I
0.2 0.3 0.4 0.5

Skill

What really matters for predictive race outcomes, however, are not the latent skills but rather
the predicted finish times. The marginal posterior predictive distributions for the predicted
finish times overlap even more, indicating a much closer race than we might expect from the
skills alone.

91

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

e <- 29
name <- pasteO('entrant_ f_times_pred[',6 e,']"')

util$plot_expectand_pushforward(samples[[namel]] / 60, 25,
flim=c(0, 175),
ylim=c (0, 0.03),
display_name="Skill",
col=util$c_light)

text (25, 0.02, paste("Entrant", e), col=util$c_light)

e <- 65
name <- pasteO('entrant_f_times_pred[', e,']"')

util$plot_expectand_pushforward(samples[[name]] / 60, 25,
flim=c(0, 175),
col=util$c_dark,
border="#BBBBBB38",
add=TRUE)

text (95, 0.02, paste("Entrant", e), col=util$c_dark)

ntrant 65

Estimated Bin
Probabilities / Bin Width

0 50 100 150

Skill

92

That said the predicted finish times still don’t tell the entire story. To accurately predict a
winner we also need to take into account the possibility that one, or possibly even both, of the
entrants forfeits. Altogether there are five possible outcomes that are relevant to whether or
not entrant 29 beats entrant 65:

o Entrant 29 forfeits and entrant 65 forfeits,
o Entrant 29 forfeits and entrant 65 finishes,
o Entrant 29 finishes and entrant 65 forfeits,
o Entrant 29 finishes and entrant finishes and 59 < 45,
o Entrant 29 finishes and entrant finishes and t,q > #¢5.

Of these entrant 29 decisively wins only in the third and fourth outcomes.

In order to evaluate the probability that entrant 29 wins we’ll need to make careful use of
conditional probability theory taking into account all of these outcomes,

m(Entrant 29 beats entrant 65)

= m(Entrant 29 beats entrant 65 | forfeityq = 1, forfeitg; = 1)

- m(forfeitqg = 1, forfeitgs = 1)

+ m(Entrant 29 beats entrant 65 | forfeitoq = 1, forfeity; = 0)
- m(forfeityg = 1, forfeitgs = 0)
+ m(Entrant 29 beats entrant 65 | forfeitoq = 0, forfeitgs = 1)

- m(forfeityg = 0, forfeitgy = 1)
+ w(Entrant 29 beats entrant 65 | forfeityq = 0, forfeitgs = 0,299 < tg5)
- m(forfeityg = 0, forfeitgs = 0,859 < tg5)
+ m(Entrant 29 beats entrant 65 | forfeityq = 0, forfeitgs = 0,159 > t45)
- m(forfeityy = 0, forfeitgy = 0,159 > t45)

I
o

- m(forfeityg = 1, forfeitgy = 1)
+ 0
- m(forfeityg = 1, forfeitg; = 0)
+ 1
- m(forfeityg = 0, forfeitgy = 1)
+ 1
- m(forfeityg = 0, forfeitgy = 0,859 < tg5)
+ 0
- m(forfeityg = 0, forfeitys = 0,199 > t45),

93

or

m(Entrant 29 beats entrant 65)
= n(forfeityy = 0, forfeitgy = 1)
+ m(forfeityq = 0, forfeitgy = 0,199 < tg5)
= 7(forfeityy = 0, forfeity; = 1)
+ 7(tyg < tgs | forfeityg = 0, forfeitgs = 0)
- m(forfeityg = 0, forfeitgs = 0)

Prorfeit win

+ T(tyg < tgs | forfeityg = 0, forfeitgs = 0) - Py forfeits-

At that is left is using Markov chain Monte Carlo to estimate the three posterior predictive
probabilities on the right-hand side and then combine them together to give the left-hand
side.

el <- 29
status_namel <- pasteO("entrant_statuses_pred[", el, "1")
time_namel <- pasteO("entrant_ f_times_pred[", el, "I")

e2 <- 65
status_name2 <- pasteO("entrant_statuses_pred[", e2, "]1")
time_name2 <- pasteO("entrant_f_times_pred[", e2, "]1")

p_forfeit_win_est <-
util$implicit_subset_prob(samples,
function(sl, s2) sl == 0 & s2 == 1,
list('sl' = status_namel,
's2' = status_name?2))

p_no_forfeits_est <-
util$implicit_subset_prob(samples,
function(sl, s2) s1 == 0 & s2 == 0,
list('sl' = status_namel,
's2' = status_name2))

p_neg_time_diff_est <-
util$implicit_subset_prob(samples,
function(tl, t2) tl1 < t2,
list('t1'
Y

time_namel,
time_name?2))

94

p <- p_forfeit_win_est[1] + p_neg_time_diff_est[1] * p_no_forfeits_est[1]
cat(sprintf ("Probability that entrant %i beats entrant %i = %.3f.",
el, e2, p))

Probability that entrant 29 beats entrant 65 = 0.734.

Although entrant 29 is definitely favored the outcome is by no means certain!

6 Conclusion

Although the domain of this analysis might be a bit obscure the best practices that it demon-
strates are fundamental. By understanding the provenance of the data we can motivate an
initial probabilistic model and then iteratively improve it until we can no longer resolve any
model inadequacies. The inferences from the final model not only provide a variety of insights
about the source of the data but also allow inform all kinds of predictions that might be of
practical relevance.

Being able to wax nostalgic about the glory days of the Super Nintendo Entertainment System®
and celebrate the capabilities of open source projects along the communities they inspire along
the way is just a pleasant bonus.

Acknowledgements

I thank jd for helpful comments.

A very special thanks to everyone supporting me on Patreon: Adam Fleischhacker, Adriano
Yoshino, Alejandro Navarro-Martinez, Alessandro Varacca, Alex D, Alexander Noll, Alexan-
der Rosteck, Andrea Serafino, Andrew Mascioli, Andrew Rouillard, Andrew Vigotsky, Ara
Winter, Austin Rochford, Avraham Adler, Ben Matthews, Ben Swallow, Benoit Essiambre,
Bertrand Wilden, Bradley Kolb, Brandon Liu, Brendan Galdo, Brynjolfur Gauti Jonsson,
Cameron Smith, Canaan Breiss, Cat Shark, CG, Charles Naylor, Chase Dwelle, Chris Jones,
Christopher Mehrvarzi, Colin Carroll, Colin McAuliffe, Damien Mannion, dan mackinlay, Dan
W Joyce, Dan Waxman, Dan Weitzenfeld, Daniel Edward Marthaler, Daniel Saunders, Dar-
shan Pandit, Darthmaluus , David Galley, David Wurtz, Doug Rivers, Dr. Jobo, Dr. Omri
Har Shemesh, Dylan Maher, Ed Cashin, Edgar Merkle, Eric LaMotte, Ero Carrera, Eugene
O’Friel, Felipe Gonzélez, Fergus Chadwick, Finn Lindgren, Florian Wellmann, Geoff Rollins,
Hékan Johansson, Hamed Bastan-Hagh, Hauke Burde, Hector Munoz, Henri Wallen, hs, Hugo
Botha, Ian, Ian Costley, idontgetoutmuch, Ignacio Vera, Ilaria Prosdocimi, Isaac Vock, Isidor
Belic, J, J Michael Burgess, jacob pine, Jair Andrade, James C, James Hodgson, James Wade,

95

Janek Berger, Jason Martin, Jason Pekos, Jason Wong, jd, Jeff Burnett, Jeff Dotson, Jeff
Helzner, Jeffrey Erlich, Jessica Graves, Joe Sloan, Joe Wagner, John Flournoy, Jonathan H.
Morgan, Jonathon Vallejo, Joran Jongerling, JU, June, Justin Bois, Kddar Andras, Karim
Naguib, Karim Osman, Kejia Shi, Kristian Gardhus Wichmann, Lars Barquist, lizzie , Lo-
gan Sullivan, LOU ODETTE, Luis F, Marcel Liithi, Marek Kwiatkowski, Mark Donoghoe,
Markus P., Marton Vaitkus, Matt Moores, Matthew, Matthew Kay, Matthieu LEROY, Mat-
tia Arsendi, Maurits van der Meer, Michael Colaresi, Michael DeWitt, Michael Dillon, Michael
Lerner, Mick Cooney, Mike Lawrence, N Sanders, N.S. ; Name, Nathaniel Burbank, Nic Fish-
man, Nicholas Clark, Nicholas Cowie, Nick S, Octavio Medina, Ole Rogeberg, Oliver Crook,
Patrick Kelley, Patrick Boehnke, Pau Pereira Batlle, Peter Johnson, Pieter van den Berg , ptr,
Ramiro Barrantes Reynolds, Raul Peralta Lozada, Ravin Kumar, Rémi , Rex Ha, Riccardo
Fusaroli, Richard Nerland, Robert Frost, Robert Goldman, Robert kohn, Robin Taylor, Ryan
Grossman, Ryan Kelly, S Hong, Sean Wilson, Sergiy Protsiv, Seth Axen, shira, Simon Duane,
Simon Lilburn, sssz, Stan_ user, Stephen Lienhard, Stew Watts, Stone Chen, Susan Holmes,
Svilup, Tao Ye, Tate Tunstall, Tatsuo Okubo, Teresa Ortiz, Theodore Dasher, Thomas Siegert,
Thomas Vladeck, Tobychev , Tomas Fryda, Tony Wuersch, Virginia Fisher, Vladimir Markov,
Wil Yegelwel, Will Farr, woejozney, yolhaj , yureq , Zach A, Zad Rafi, and Zhengchen Cai.

References

“Super Metroid Map Rando.” n.d.
“Super Metroid Randomizer | Racetime.gg.” n.d.

License

A repository containing all of the files used to generate this chapter is available on GitHub.

The code in this case study is copyrighted by Michael Betancourt and licensed under the new
BSD (3-clause) license:

https://opensource.org/licenses/BSD-3-Clause

The text and figures in this chapter are copyrighted by Michael Betancourt and licensed under
the CC BY-NC 4.0 license:

https://creativecommons.org/licenses/by-nc/4.0/

96

https://github.com/betanalpha/quarto_chapters/tree/main/case_studies/racing
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/licenses/by-nc/4.0/

Original Computing Environment

writeLines(readLines(file.path(Sys.getenv("HOME"), ".R/Makevars")))

CC=clang

CXXFLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macr
CXX=clang++ -arch x86_64 -ftemplate-depth-256

CXX14FLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-ma
CXX14=clang++ -arch x86_64 -ftemplate-depth-256

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.4.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/1ibRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/1ibRlapack.dylib;

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] colormap_0.1.4 rstan_2.32.6 StanHeaders_2.32.7

loaded via a namespace (and not attached):

[1] gtable_0.3.4 jsonlite_1.8.8 compiler_4.3.2 Rcpp_1.0.11
[5] parallel_4.3.2 gridExtra_2.3 scales_1.3.0 yaml_2.3.8
[9] fastmap_1.1.1 gegplot2_3.4.4 R6_2.5.1 curl_5.2.0
[13] knitr_1.45 tibble_3.2.1 munsell_0.5.0 pillar_1.9.0
[17] rlang 1.1.2 utf8 1.2.4 V8 4.4.1 inline 0.3.19

97

[21]
[25]
[29]
[33]
[37]
[41]

xfun_0.41
digest_0.6.33
evaluate_0.23
stats4_4.3.2
rmarkdown_2.25
pkgconfig 2.0.3

RcppParallel_5.1.7 cli_3.6.2

grid_4.3.2 lifecycle_1.0.4
glue_1.6.2 QuickJSR_1.0.8
pkgbuild_1.4.3 fansi_1.0.6

matrixStats_1.2.0 tools_4.3.2
htmltools_0.5.7

98

magrittr_2.0.3
vctrs_0.6.5
codetools_0.2-19
colorspace_2.1-0
loo_2.6.0

Stan
Program 1 modell.stan

functions {
// Mean-dispersion parameterization of gamma family
real gamma_md_lpdf(real x, real mu, real psi) {
return gamma_lpdf(x | inv(psi), inv(mu * psi));

}

real gamma_md_rng(real mu, real psi) {
return gamma_rng(inv(psi), inv(mu * psi));
+
}

data {
int<lower=1> N_races; // Total number of races
int<lower=1> N_entrants; // Total number of entrants
// Each entrant is assigned a unique index in [1, N_entrants]

// Number of entrants in each race who finished
array[N_races] int<lower=1, upper=N_entrants> race_N_entrants_f;

// Indices for extracting finished entrant information in each race
array[N_races] int race_f_start_idxs;
array[N_races] int race_f_end_idxs;

// Total number of entrant finishes across all races
int <lower=1> N_entrances_fs;

// Finished entrant indices within each race
array[N_entrances_fs] int race_entrant_f_idxs;

// Entrant finish times within each race
array[N_entrances_fs] real race_entrant_f_times;

}

parameters {
real gamma; // Log baseline finish time (log seconds)
array[N_races] real difficulties; // Seed difficulties
array[N_entrants] real skills; // Entrant skills
real<lower=0> psij; // Gamma dispersion configuration

}

model {
// Prior model
gamma ~ normal(8.045, 0.237); // log(1800 s) < gamma < log(5400 s)
difficulties ~ normal(0, 0.299); // =1log(2) <~ difficulties <~ +log(2)
skills ~ normal(0, 0.299); // -log(2) <~ skills <~ +log(2)
psi ~ normal(0, 0.389); // 0 <~ psi <~ 1

// Observational model
for (r in 1:N_races) {
// Extract details for entrants who finished

Stan
Program 2 model2.stan

functions {
// Mean-dispersion parameterization of inverse gamma family
real inv_gamma_md_lpdf (real x, real mu, real psi) {
return inv_gamma_lpdf(x | inv(psi) + 2, mu * (inv(psi) + 1));

}

real inv_gamma_md_rng(real mu, real psi) {
return inv_gamma_rng(inv(psi) + 2, mu * (inv(psi) + 1));
+
}

data {
int<lower=1> N_races; // Total number of races
int<lower=1> N_entrants; // Total number of entrants
// Each entrant is assigned a unique index in [1, N_entrants]

// Number of entrants in each race who finished
array[N_races] int<lower=1, upper=N_entrants> race_N_entrants_f;

// Indices for extracting finished entrant information in each race
array[N_races] int race_f_start_idxs;
array[N_races] int race_f_end_idxs;

// Total number of entrant finishes across all races
int <lower=1> N_entrances_fs;

// Finished entrant indices within each race
array[N_entrances_fs] int race_entrant_f_idxs;

// Entrant finish times within each race
array[N_entrances_fs] real race_entrant_f_times;

}
parameters {
real gamma; // Log baseline finish time (log seconds)
array[N_races] real difficulties; // Seed difficulties
array[N_entrants] real skills; // Entrant skills
real<lower=0> psi; // Inverse gamma dispersion configuration
}
model {
// Prior model
gamma ~ normal(8.045, 0.237); // 1log(1800 s) < gamma < log(5400 s)
difficulties ~ normal(0, 0.299); // =Tog(2) <~ difficulties <~ +log(2)
skills ~ normal(0, 0.299); // -log(2) <~ skills <~ +log(2)
psi ~ normal(0, 0.389); // 0 <~ psi <~ 1

// Observational model
for (r in 1:N_races) {
// Extract details for entrants who finished

Stan
Program 3 model3.stan

functions {
// Mean-dispersion parameterization of inverse gamma family
real inv_gamma_md_lpdf (real x, real mu, real psi) {
return inv_gamma_lpdf(x | inv(psi) + 2, mu * (inv(psi) + 1));

}

real inv_gamma_md_rng(real mu, real psi) {
return inv_gamma_rng(inv(psi) + 2, mu * (inv(psi) + 1));
+
}

data {
int<lower=1> N_races; // Total number of races
int<lower=1> N_entrants; // Total number of entrants
// Each entrant is assigned a unique index in [1, N_entrants]

// Number of entrants in each race who finished
array[N_races] int<lower=1, upper=N_entrants> race_N_entrants_f;

// Indices for extracting finished entrant information in each race
array[N_races] int race_f_start_idxs;
array[N_races] int race_f_end_idxs;

// Number of entrants in each race who forfeit and did not finish
array[N_races] int<lower=0, upper=N_entrants> race_N_entrants_dnf;

// Indices for extracting forfeited entrant information in each race
array[N_races] int race_dnf_start_idxs;
array[N_races] int race_dnf_end_idxs;

// Total number of finishes across all races
int <lower=1> N_entrances_fs;

// Finished entrant indices within each race
array[N_entrances_fs] int race_entrant_f_idxs;

// Entrant finish times within each race
array[N_entrances_fs] real race_entrant_f_times;

// Total number of forfeits across all races
int<lower=0> N_entrances_dnfs;

// Forfeited entrant indices within each race
array[N_entrances_dnfs] int race_entrant_dnf_idxs;

parameters {
real gamma; // Log baseline finish time (log seconds)
array[N_races] real difficulties; // Seed difficulties
array[N_entrants] real skills; // Entrant skills

Stan
Program 4 model4.stan

functions {
// Mean-dispersion parameterization of inverse gamma family
real inv_gamma_md_lpdf (real x, real mu, real psi) {
return inv_gamma_lpdf(x | inv(psi) + 2, mu * (inv(psi) + 1));

}

real inv_gamma_md_rng(real mu, real psi) {
return inv_gamma_rng(inv(psi) + 2, mu * (inv(psi) + 1));
+
}

data {
int<lower=1> N_races; // Total number of races
int<lower=1> N_entrants; // Total number of entrants
// Each entrant is assigned a unique index in [1, N_entrants]

// Number of entrants in each race who finished
array[N_races] int<lower=1, upper=N_entrants> race_N_entrants_f;

// Indices for extracting finished entrant information in each race
array[N_races] int race_f_start_idxs;
array[N_races] int race_f_end_idxs;

// Number of entrants in each race who did not finish
array[N_races] int<lower=0, upper=N_entrants> race_N_entrants_dnf;

// Indices for extracting did not finish entrant information in each race
array[N_races] int race_dnf_start_idxs;
array[N_races] int race_dnf_end_idxs;

// Total number of finishes across all races

int <lower=1> N_entrances_fs;

array [N_entrances_fs] int race_entrant_f_idxs; // Entrant index

array [N_entrances_fs] real race_entrant_f_times; // Entrant finish times

// Total number of forfeits across all races
int<lower=0> N_entrances_dnfs;
array[N_entrances_dnfs] int race_entrant_dnf_idxs; // Entrant index

// MapRando versioning
int<lower=1> N_versions;
array[N_races] int<lower=1, upper=N_versions> version_idxs;

102
parameters {

real gamma; // Log baseline finish time (log seconds)

vector [N_races] eta_difficulties; // Non-centered seed difficulties
vector<lower=0>[N_versions] tau_difficulties; // Seed difficulty population scale

Stan
Program 5 model5.stan

functions {
// Mean-dispersion parameterization of inverse gamma family
real inv_gamma_md_lpdf (real x, real mu, real psi) {
return inv_gamma_lpdf(x | inv(psi) + 2, mu * (inv(psi) + 1));

}

real inv_gamma_md_rng(real mu, real psi) {
return inv_gamma_rng(inv(psi) + 2, mu * (inv(psi) + 1));
+
}

data {
int<lower=1> N_races; // Total number of races
int<lower=1> N_entrants; // Total number of entrants
// Each entrant is assigned a unique index in [1, N_entrants]

// Number of entrants in each race who finished
array[N_races] int<lower=1, upper=N_entrants> race_N_entrants_f;

// Indices for extracting finished entrant information in each race
array[N_races] int race_f_start_idxs;
array[N_races] int race_f_end_idxs;

// Number of entrants in each race who did not finish
array[N_races] int<lower=0, upper=N_entrants> race_N_entrants_dnf;

// Indices for extracting did not finish entrant information in each race
array[N_races] int race_dnf_start_idxs;
array[N_races] int race_dnf_end_idxs;

// Total number of finishes across all races

int <lower=1> N_entrances_fs;

array [N_entrances_fs] int race_entrant_f_idxs; // Entrant index

array [N_entrances_fs] real race_entrant_f_times; // Entrant finish times

// Total number of forfeits across all races
int<lower=0> N_entrances_dnfs;
array[N_entrances_dnfs] int race_entrant_dnf_idxs; // Entrant index

// MapRando versioning
int<lower=1> N_versions;
array[N_races] int<lower=1, upper=N_versions> version_idxs;

103

parameters {
real gamma; // Log baseline finish time (log seconds)

vector [N_races] eta_difficulties; // Non-centered seed difficulties
vector<lower=0>[N_versions] tau_difficulties; // Seed difficulty population scale

	Super Metroid Map Randomizer Races
	Environment Setup
	Data Exploration
	Model Development
	Model 1
	Model 2
	Model 3
	Model 4
	Inferential Comparison
	Log Baseline
	Entrant 29 Skill
	Entrant 44 Skill
	Entrant 83 Skill

	Possible Model Expansions
	Idiosyncratic Entrants
	Transcending Normal Population Models
	Self-Improvement
	Variable Variability

	Actionable Insights
	Ranking Entrants
	Predicting Race Outcomes
	Single Entrant Predictions
	Head-to-Head Predictions

	Conclusion
	Acknowledgements
	References
	License
	Original Computing Environment

