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Sometimes a system of applied interest can be adequately modeled with a single space. When a
system is too complicated for a single space we may be able to model it with multiple spaces at
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the same time. Product spaces integrate multiple component spaces together by first combining
both their underlying sets and their associated structures.

1 Product Sets

Product sets combine elements from multiple sets into composite elements. To develop this
concept as cleanly as possible we’ll first investigate how to combine elements from finite sets
before considering the general case. Finally we’ll investigate the behavior of subsets of these
product sets.

1.1 Finite Product Sets

Consider two finite sets, one with three elements,

𝑋1 = {□, ♣, ♢},

and one with two elements,
𝑋2 = {♡, ♠}.

One way to combine these two sets together is to collect their individual elements together
into larger set,

𝑋1 ∪ 𝑋2 = {□, ♣, ♢, ♡, ♠}.
This concatenated set allows us to choose from any of the elements in 𝑋1 and 𝑋2, but we can
only choose only one element at a time.

In order to choose elements from both sets at the same time we need to account for all of the
possible pairs of elements from 𝑋1 and 𝑋2. This requires replicating one of the sets for each
element in the other set.

For example we can replicate 𝑋2 three times, one for each element of 𝑋1, to give the three
distinct sets

{□} × 𝑋2 = {♡, ♠}
{♣} × 𝑋2 = {♡, ♠}
{♢} × 𝑋2 = {♡, ♠}.

To differentiate between the elements of these replications we can tag them with the corre-
sponding element of 𝑋1, such as

{□} × 𝑋2 = {♡□, ♠□}
{♣} × 𝑋2 = {♡♣, ♠♣}
{♢} × 𝑋2 = {♡♢, ♠♢}.
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or

{□} × 𝑋2 = {(□, ♡), (□, ♠)}
{♣} × 𝑋2 = {(♣, ♡), (♣, ♠)}
{♢} × 𝑋2 = {(♢, ♡), (♢, ♠)}.

Collecting the elements of these distinct, replicated sets together gives a set whose elements
account for all of the possible pairings between the elements of 𝑋1 and 𝑋2,

⋃
𝑥1∈𝑋1

{𝑥1} × 𝑋2 = {□} × 𝑋2 ∪ {♣} × 𝑋2 ∪ {♢} × 𝑋2

= {(□, ♡), (□, ♠), (♣, ♡), (♣, ♠), (♢, ♡), (♢, ♠)}
≡ 𝑋1 × 𝑋2.

This new set 𝑋1 × 𝑋2 is denoted a product set with component sets 𝑋1 and 𝑋2.

This construction, however, is not unique. An equivalent way to construct the product set of
all pairs of elements in 𝑋1 and 𝑋2 is to replicate 𝑋1 twice, one for each of the two elements
in 𝑋2. This gives two distinct sets

𝑋1 × {♡} = {□, ♣, ♢}
𝑋1 × {♠} = {□, ♣, ♢},

or explicitly differentiating the elements across the replications,

𝑋1 × {♡} = {(□, ♡), (♣, ♡), (♢, ♡)}
𝑋1 × {♠} = {(□, ♠), (♣, ♠), (♢, ♠)}.

Collecting these replicated elements together gives

⋃
𝑥2∈𝑋2

𝑋1 × {𝑥2} = 𝑋1 × {♡} ∪ 𝑋1 × {♠}

= {(□, ♡), (♣, ♡), (♢, ♡), (□, ♠), (♣, ♠), (♢, ♠)}

which is exactly the product set we constructed above! In other words we have two equivalent
constructions of the product set (Figure 1),

𝑋1 × 𝑋2 = ⋃
𝑥1∈𝑋1

{𝑥1} × 𝑋2

= ⋃
𝑥2∈𝑋2

𝑋1 × {𝑥2}.
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Figure 1: The finite product set 𝑋1 × 𝑋2 can be constructed (a) by replicating the finite set
𝑋2 once for each element of the finite set 𝑋1 or (b) by replicating 𝑋1 once for each
element of 𝑋2. Either way results in an equivalent set of pairs of elements selected
from 𝑋1 and 𝑋2.

Each element of the product set is uniquely specified by one element of 𝑋1 and one element of
𝑋2. Consequently every variable taking values in the product set 𝑥 ∈ 𝑋1 ×𝑋2 is compromised
of an ordered pair of variables from each component space,

𝑥 = (𝑥1, 𝑥2),

with 𝑥1 ∈ 𝑋1 and 𝑥2 × 𝑋2.

1.2 General Product Sets

This construction immediately generalizes beyond finite sets. Given two sets 𝑋1 and 𝑋2 we can
construct the product set by replicating 𝑋2 once for each element of 𝑋1 and then combining
the replicated elements together (Figure 2a)

𝑋1 × 𝑋2 = ⋃
𝑥1∈𝑋1

{𝑥1} × 𝑋2,

or equivalently by replicating 𝑋1 once for each element of 𝑋2 and then combining the replicated
elements together (Figure 2b),

𝑋1 × 𝑋2 = ⋃
𝑥2∈𝑋2

𝑋1 × {𝑥2}.

The common result 𝑋1 × 𝑋2 is denoted a product set with the component sets 𝑋1 and
𝑋2.
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{{x1} ×X2 for x1 ∈ X1} X1 ×X2 =
⋃

x1∈X1

{x1} ×X2

(a)

{X1 × {x2} for x2 ∈ X2} X1 ×X2 =
⋃

x2∈X2

X1 × {x2}

(b)

Figure 2: A general product set with two components 𝑋1 × 𝑋2 can be constructed (a) by
replicating the set 𝑋2 once for each element of the set 𝑋1 or (b) by replicating 𝑋1
once for each element of 𝑋2. Both constructions give a set consisting of pairs of
elements selected from 𝑋1 and 𝑋2.
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As in the finite case every element of a general, binary product set is uniquely specified with
a pair of elements, one from the first component set, 𝑥1 ∈ 𝑋1, and the other from the second
component set, 𝑥2 ∈ 𝑋2. Because of this each variable taking values in the product set
𝑥 ∈ 𝑋1 × 𝑋2 is comprised of an ordered pair of component variables,

𝑥 = (𝑥1, 𝑥2)

with 𝑥1 ∈ 𝑋1 and 𝑥2 ∈ 𝑋2.

Iterating this construction allows us to define product sets from more than two components
sets. For example given three sets 𝑋1, 𝑋2, and 𝑋3 we can construct the three-component
product space 𝑋1 × 𝑋2 × 𝑋3 in three equivalent different ways (Figure 3). We can construct
the product set 𝑋1 × 𝑋2 and then replicate it once for each element 𝑥3 ∈ 𝑋3 before combining
those replications together,

𝑋1 × 𝑋2 × 𝑋3 = ⋃
𝑥3×𝑋3

𝑋1 × 𝑋2 × {𝑥3}.

At the same time we can construct the product set 𝑋2 × 𝑋3, replicate it once for each element
𝑥1 ∈ 𝑋1, and the aggregate the resulting elements,

𝑋1 × 𝑋2 × 𝑋3 = ⋃
𝑥1×𝑋1

{𝑥1} × 𝑋2 × 𝑋3.

Finally we can construct the product set 𝑋1 × 𝑋3, replicate it once for each element 𝑥2 ∈ 𝑋2,
and then aggregate,

𝑋1 × 𝑋2 × 𝑋3 = ⋃
𝑥2×𝑋2

𝑋1 × {𝑥2} × 𝑋3.

All three constructions result in the same product space where each element is uniquely spec-
ified by a triplet of component variables,

𝑥 = (𝑥1, 𝑥2, 𝑥3).

More generally given 𝐼 component sets

{𝑋1, … , 𝑋𝑖, … 𝑋𝐼}

we can construct a corresponding product set

𝑋1 × … × 𝑋𝑖 × … × 𝑋𝐼 = ×𝐼
𝑖=1𝑋𝑖

where every product variable 𝑥 ∈ ×𝐼
𝑖=1𝑋𝑖 is compromised of a ordered collection of component

variables
𝑥 = (𝑥1, … , 𝑥𝑖, … , 𝑥𝐼)

with 𝑥𝑖 ∈ 𝑋𝑖. This ordered collection of component variables is known as an n-tuple variable
or more compactly just an n-tuple, generalizing “couple” that denotes a pair of component
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{X1 ×X2 × {x3} for x3 ∈ X3}
X1 ×X2 ×X3 =⋃

x3∈X3

X1 ×X2 × {x3}

{X1 × {x2} ×X3 for x2 ∈ X2}
X1 ×X2 ×X3 =⋃

x2∈X2

X1 × {x2} ×X3

{{x1} ×X2 ×X3 for x1 ∈ X1}
X1 ×X2 ×X3 =⋃

x1∈X1

{x1} ×X2 ×X3

Figure 3: The three component sets 𝑋1, 𝑋2, and 𝑋3 can be combined into the product set
𝑋1 × 𝑋2 × 𝑋3 in multiple ways For example we can first combine 𝑋1 and 𝑋2 into
𝑋1 ×𝑋2, replicate that binary product once for each element of 𝑋3, and then merge
those replications. Alternatively we can combine 𝑋1 and 𝑋3 first or 𝑋2 and then
𝑋3 first. All of these constructions results in a three-component product space
𝑋1 × 𝑋2 × 𝑋3.
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variables and “triple” that denotes three component variables to an arbitrary number of com-
ponent variables. Because their elements are specified by multiple variables product sets are
often referred to as multivariate sets.

When working with multiple product variables we might be inclined to use integer indices to
differentiate between them. These indices, however, are readily confused with the indices used
to denote the component variables. In circumstances where numbering product variables is
useful I will use a comma to separate the indices with the first always denoting the different
variables and the latter always denoting the different components,

𝑥𝑗 = (𝑥𝑗,1, … , 𝑥𝑗,𝑖, … , 𝑥𝑗,𝐼).
In other words 𝑥𝑗,𝑖 refers to the 𝑖th component variable of the 𝑗th product variable.

1.3 Product Subsets

Just as elements from each of the component sets uniquely specifies an element from the
corresponding product set, a subset of the component sets uniquely specifies a subset of the
product set. These product subsets x ⊂ ×𝐼

𝑖=1𝑋𝑖 are often written as

x = x1 × ⋯ × x𝑖 × ⋯ × x𝐼 = ×𝐼
𝑖=1x𝑖

where
x𝑖 ⊂ 𝑋𝑖.

The product power set is itself a product of the component power sets,

2×𝐼
𝑖=1𝑋𝑖 = 2𝑋1 × … × 2𝑋𝑖 × … × 2𝑋𝐼 = ×𝐼

𝑖=12𝑋𝑖 .
The empty product set is given by aggregating the component empty sets,

∅ = ×𝐼
𝑖=1∅𝑖,

while the full product set is given by aggregating the component full sets,

𝑋 = ×𝐼
𝑖=1𝑋𝑖.

Unfortunately most of the set operations are not compatible with the component structure
of a product set. For example the complement of a product subset is not generally given by
applying the complement operation to each of the component subsets,

x𝑐 ≠ ×𝐼
𝑖=1x𝑐

𝑖 ,
although there are a few special cases where this is true. Similarly the union of two product
subsets is not generally given by the product of the component unions: for two arbitrary
product subsets

x = ×𝐼
𝑖=1x𝑖
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and
x′ = ×𝐼

𝑖=1x′
𝑖

we will have
x ∪ x′ ≠ ×𝐼

𝑖=1x𝑖 ∪ x′
𝑖.

The lone exception is the intersection of product subsets, which can always be derived from
the intersection of the component subsets,

x ∩ x′ = ×𝐼
𝑖=1x𝑖 ∩ x′

𝑖.

This singular compatibility also introduces a convenient geometric intuition to product subsets.
In particular consider decomposing the product subset 𝑋1 × 𝑋2 into replications of 𝑋1,

𝑋1 × 𝑋2 = ⋃
𝑥2∈𝑋2

𝑋1 × {𝑥2}.

Selecting the subset x1 ⊂ 𝑋1 in every replication lifts x1 into the product subset
x1 × 𝑋2 ⊂ 𝑋1 × 𝑋2.

At the same time given the decomposition
𝑋1 × 𝑋2 = ⋃

𝑥1∈𝑋1

{𝑥1} × 𝑋2

we can select the subset x2 ⊂ 𝑋2 in every replication {𝑥1} × 𝑋2 to define the product subset
𝑋1 × x2 ⊂ 𝑋1 × 𝑋2.

The intersection of these two lifted product subsets is then just the product of x1 and x2,
(x1 × 𝑋2) ∩ (𝑋1 × x2) = (x1 ∩ 𝑋1) × (𝑋2 ∩ x2)

= (x1) × (x2).

In other words we can interpret the product subset x1 × x2 as the overlap of the “shadows”
that x1 and x2 cast into the full product set (Figure 4). Because of this geometric intuition
product subsets are sometimes referred to as rectangular subsets.

This geometric perspective can for example be used to better understand why the complement
and union operations aren’t compatible with component structure. The product of comple-
mentary component subsets generally excludes all of the elements in the complement of the
corresponding product subset (Figure 5). On the other hand the product of the union of
component subsets generally includes elements that are not in the union of the corresponding
product subsets (Figure 6). Only when considering intersections do both constructions always
give the same subset (Figure 7).

Finally we need to keep in mind that, while they are very useful in practice, product subsets
do not span the entire product power set. In other words not every subset of ×𝐼

𝑖=1𝑋𝑖 is a
product subset. This includes for example the union of arbitrary product subsets as well as
many other, more intricate subsets of the product set. Indeed most subsets of any product set
×𝐼

𝑖=1𝑋𝑖 are not product subsets!
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x1 ⊂ X1 x1 ×X2 ⊂ X1 ×X2

(a)

x2 ⊂ X2 X1 × x2 ⊂ X1 ×X2

(b)

x1 × x2 = (x1 ×X2) ∩ (X1 × x2)

(c)

Figure 4: Product subsets admit a useful geometric interpretation where (a, b) we first lift
each component subset to the product set before (c) constructing the product subset
from their overlap.
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x1 ×X2

X1 × x2

x1 × x2 = (x1 ×X2) ∩ (X1 × x2) (x1 × x2)
c

(a)

x1 ×X2

X1 × x2

xc1 ×X2

X1 × xc2

xc1 × xc2 = (xc1 ×X2) ∩ (X1 × xc2)

(b)

Figure 5: Combining component subsets into a product subset doesn’t commute with the com-
plement operator. (a) Taking the product first and then applying the complement
operator doesn’t always give the same subset as (b) applying the complement oper-
ator to each component subset and then taking their product.
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x1 ×X2 X1 × x2 x′1 ×X2 X1 × x′2

x1 × x2 x′1 × x′2

(x1 × x2) ∪ (x′1 × x′2)

(a)

x1 ×X2 x′1 ×X2 X1 × x2 X1 × x′2

(x1 ∪ x′1)×X2 X1 × (x2 ∪ x′2)

(x1 ∪ x′1)× (x2 ∪ x′2) =
(
(x1 ∪ x′1)×X2

)
∩
(
X1 × (x2 ∪ x′2)

)

(b)

Figure 6: The union operator also doesn’t commute with the product construction. (a) Taking
the product first and then applying the union operator doesn’t always give the same
subset as (b) applying the union operator to each component subset and then taking
their product.
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x1 ×X2 X1 × x2 x′1 ×X2 X1 × x′2

x1 × x2 x′1 × x′2

(x1 × x2) ∩ (x′1 × x′2)

(a)

x1 ×X2 x′1 ×X2 X1 × x2 X1 × x′2

(x1 ∩ x′1)×X2 X1 × (x2 ∩ x′2)

(x1 ∩ x′1)× (x2 ∩ x′2) =
(
(x1 ∩ x′1)×X2

)
∩
(
X1 × (x2 ∩ x′2)

)

(b)

Figure 7: Of the three set operators only the intersection operator commutes with products.
(a) Taking the product first and then applying the intersection operator always gives
the same subset as (b) applying the intersection operator to each component subset
and then taking their product.
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2 Product Structure

In order to elevate product sets to product spaces we need to construct product structure
from any structure endowed onto the component sets. Conveniently these constructions are
straightforward for our basic structures.

In this section I will always assume the ambient product set 𝑋 = ×𝐼
𝑖=1𝑋𝑖 with component sets

𝑋𝑖.

2.1 Product Orderings

If each component set is equipped with a strict ordering then we can unambiguously define
a product variable 𝑥 ∈ 𝑋 to be smaller than another product variable 𝑥′ ∈ 𝑋 if all of the
component elements in 𝑥 are smaller than all of the corresponding component elements in 𝑥′.
In other words 𝑥 < 𝑥′ if and only if

𝑥𝑖 < 𝑥′
𝑖

for all 𝑖 ∈ 1, … , 𝐼 .

On the other hand if only some of the component elements in 𝑥 are smaller than the corre-
sponding component elements in 𝑥′, while some are larger, then the comparison between the
two product elements will be ambiguous. Consequently a strict ordering on the component
sets does not fully define a strict ordering on the product set.

That said we can use the strict component orderings to define a partial ordering of the product
set where any two product elements with mixed component orderings are arranged together.
In the same way we can use partial component orderings to define a partial ordering of the
product set. Either way component orderings will generally define partial product orderings.

2.2 Product Algebras

When each component set is equipped with an individual algebraic operation we can define a
corresponding product operation by applying these component operations at the same time.
For example if each component set is equipped with a binary operation

⋅𝑖 ∶ 𝑋𝑖 × 𝑋𝑖 → 𝑋𝑖
𝑥𝑖, 𝑥′

𝑖 ↦ 𝑥𝑖 ⋅ 𝑥′
𝑖,

then we can construct a product operation ⋅ ∶ 𝑋 × 𝑋 → 𝑋 as

𝑥 ⋅ 𝑥′ = (𝑥1 ⋅1 𝑥′
1, … , 𝑥𝑖 ⋅𝑖 𝑥′

𝑖, … , 𝑥𝐼 ⋅𝐼 𝑥′
𝐼).

Product operations acquire any properties that are shared by all of the component operations.
For example if all of the component operations are commutative then the product operation
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will also be commutative. Similarly if all of the component operations are unital with identity
elements 𝑥Id,𝑖 then the product operation will also be unital with the composite identity
element

𝑥Id = (𝑥Id,1, … , 𝑥Id,𝑖, … , 𝑥Id,𝐼).

2.3 Product Metrics

Product metrics can be constructed by summing over the outputs of component metrics. More
formally if each component set is equipped with a metric

𝑑𝑖 ∶ 𝑋𝑖 × 𝑋𝑖 → ℝ+

𝑥𝑖, 𝑥′
𝑖 ↦ 𝑑(𝑥𝑖, 𝑥′

𝑖)

then we can define a product metric as

𝑑 ∶ 𝑋 × 𝑋 → ℝ+

𝑥, 𝑥′ ↦
𝐼

∑
𝑖=1

𝑑(𝑥𝑖, 𝑥′
𝑖).

Critically this product metric acquires all of the properties required of a metric from the
component metrics. By construction the product distances vanish if and only if all of the
individual component distances vanish. This requires all of the component elements to be
equal which implies that the product elements are also equal. In other words the product
metric returns zero if and only if the two input product elements are the same, as required for
a metric.

On the other hand two input product elements are distinct if and only if at least one of the
component element has to be distinct. In this case at least one of the component distances
will be greater than zero. Consequently the summed distances will be non-zero whenever the
input product elements are distinct.

Symmetry of the product metric follows the commutativity of the component metrics,

𝑑(𝑥, 𝑥′) =
𝐼

∑
𝑖=1

𝑑(𝑥𝑖, 𝑥′
𝑖)

=
𝐼

∑
𝑖=1

𝑑(𝑥′
𝑖, 𝑥𝑖)

= 𝑑(𝑥′, 𝑥).
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Likewise for any three product elements 𝑥, 𝑥′, 𝑥″ ∈ 𝑋 we always have a triangle inequality,

𝑑(𝑥, 𝑥″) =
𝐼

∑
𝑖=1

𝑑(𝑥𝑖, 𝑥″
𝑖 )

≤
𝐼

∑
𝑖=1

𝑑(𝑥𝑖, 𝑥′
𝑖) + 𝑑(𝑥′

𝑖, 𝑥″
𝑖 )

≤
𝐼

∑
𝑖=1

𝑑(𝑥𝑖, 𝑥′
𝑖) +

𝐼
∑
𝑖=1

𝑑(𝑥′
𝑖, 𝑥″

𝑖 )

≤ 𝑑(𝑥, 𝑥′) + 𝑑(𝑥′, 𝑥″).

2.4 Product Topologies

If every component set is equipped with a component topology 𝔱𝑖 then we can define open
component subsets x𝑖 ∈ 𝔱𝑖. Any combination of these open component subsets then defines an
open product subset

×𝐼
𝑖=1x𝑖.

Because the component topologies all contain the component empty sets and component full
sets we will always be able to construct the product empty set and product full set from this
procedure.

Moreover because the component open subsets are finite intersections these productsubsets
will be as well. For example given any finite collection of open component subsets

{x1,𝑖, … , x𝑗,𝑖, … x𝐽,𝑖}

we have closure under intersections,

x∪,𝑖 ≡ ∩𝐽
𝑗=1x𝑗,𝑖 ∈ 𝔱𝑖.

Consequently the intersection of any finite collection of open product subsets gives another
open product subset,

∩𝑗x𝑗 = ∩𝑗 (×𝐼
𝑖=1x𝑗,𝑖)

= ×𝐼
𝑖=1 (∩𝑗x𝑗,𝑖)

= ×𝐼
𝑖=1 (x∪,𝑖) .

Unfortunately the union of any open product subsets will not in general be another product
subset. Combining the open product subsets with all of their unions, however, defines a
collection of subsets that satisfies all of the properties of a topology. We refer to this topology
as a product topology.
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3 Prototypical Product Spaces

The most common product spaces we will encounter in practice are built up from the proto-
typical spaces that we reviewed in Chapter 2, Section 2, combining various integers and real
lines together into larger spaces. That said there are a few product spaces worth particular
note.

3.1 Replicated Product Spaces

Often we are interested not in any single element of a space 𝑋 but rather multiple elements
of that space at the same time. The selection of 𝐼 elements can be modeled by replicating the
space 𝐼 times and then using those replications as components of a product space,

𝑋𝐼 = 𝑋 × … × 𝑋 = ×𝐼
𝑖=1𝑋.

This construction is referred to as a replicated product space, identical product space
or power space.

We already have seen this construction in a few places. For example we defined binary algebraic
operator over the set 𝑋 as mapping two elements of 𝑋 into a single element of 𝑋. That input
set of pairs of elements was denoted 𝑋 × 𝑋, which is just a replicated product set with a
separate copy of 𝑋 for each input.

Similarly sequences of 𝐼 elements from a given set,

{𝑥1, … , 𝑥𝑖, … , 𝑥𝐼},

can be defined as elements of the replicated power set 𝑋𝐼 . Allowing 𝐼 to become arbitrarily
large then allows for the countably infinitely long sequences.

One potential difficulty that can arise when working with replicated product spaces is dis-
tinguishing between the different copies of the base space 𝑋 that form the components. In
particular any notation that might differentiate the individual copies, such as ticks or integer
indices, can also be confused as defining different spaces entirely. For example depending on
the context 𝑋1 × 𝑋2 might be used to denote both a product space comprised of two different
spaces and a replicated product space comprised of two copies of the same space. To avoid
any confusion we have to be explicit about when we are assuming a general product space and
when we are assuming a replicated product space.
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3.2 Multivariate Real Numbers

Combining 𝐼 real lines together defines the multivariate real numbers, ℝ𝐼 . This is also
referred to as a real space or an 𝐼-dimensional Euclidean space.

The multivariate real numbers inherit the identity crisis of the real lines from which they are
built. If we take the rigid real line perspective then there will be infinite, distinct multivariate
real numbers: different choices of component ordering, algebraic, and metric structures will
define distinct product spaces. On the other hand if we assume the flexible real line perspective
then the multivariate real numbers will correspond to a single, flexible space. In this case
each different configuration of the component lines will define a different configuration of the
corresponding product space. Following the real line terminology I will refer to these as rigid
real spaces and flexible real spaces, respectively.

To visually summarize the structure of a real space we can extend grids defined over the com-
ponent spaces across the other component spaces and then overlay them to form a rectangular
mesh (Figure 8).

δ

δ

Figure 8: Extending component grids into the product space defines a rectangular mesh that
visually communicate the product metric structure. Here ℝ2 is represented by a
two-dimensional mesh.

Combining interval subsets from each component real line

[𝑥1,𝑖, 𝑥2,𝑖] = {𝑥𝑖 ∈ 𝑋𝑖 ∣ 𝑥1,𝑖 ≤ 𝑥𝑖 ≤ 𝑥2,𝑖},
defines a rectangular subset over the full product space,

[𝑥1,1, 𝑥2,1] × … [𝑥1,𝑖, 𝑥2,𝑖] × … [𝑥1,𝐼 , 𝑥2,𝐼 ].
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Because these rectangular subsets are compatible with all of the structures of a multivariate
real space they are particular useful.

4 Decomposing Product Spaces

Every element of a product space is uniquely specified by an element from each component
space. Specifying all of the component elements at the same time, however, can sometimes be
overwhelming. Fortunately we can always specify the component elements sequentially.

For example if we decompose a two component product set 𝑋1 × 𝑋2 into replications of the
second component set,

𝑋1 × 𝑋2 = ⋃
𝑥1∈𝑋1

{𝑥1} × 𝑋2

then every element can be specified by first specifying an element of the first component set,

̃𝑥1 ∈ 𝑋1,

and then an element in the corresponding replication of the second component set,

𝑥2 ∈ { ̃𝑥1} × 𝑋2,

to give
( ̃𝑥1, ̃𝑥2) ∈ 𝑋1 × 𝑋2.

Note that we’re using the h̃ere to denote bound variables as we make each choice of component
elements.

At the same time if we decompose the product set into

𝑋1 × 𝑋2 = ⋃
𝑥2∈𝑋2

𝑋1 × {𝑥2}

then every element can be specified by first specifying an element of the second component
set,

̃𝑥2 ∈ 𝑋2,
before specifying an element in the corresponding replication of the first component set,

̃𝑥1 ∈ 𝑋1 × {𝑥2}.

This sequential specification also has a nice geometric interpretation (Figure 9). Specifying
̃𝑥1 ∈ 𝑋1 and then ̃𝑥2 ∈ { ̃𝑥1} × 𝑋2 corresponds to arriving at ( ̃𝑥1, ̃𝑥2) by first moving along 𝑋1

and then moving along the replication {𝑥1} × 𝑋2. Alternatively specifying ̃𝑥2 ∈ 𝑋2 and then
̃𝑥1 ∈ 𝑋1 × { ̃𝑥2} corresponds to moving along 𝑋2 before moving along {𝑥1} × 𝑋2.
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X1 ×X2 x̃1 ∈ X1 x̃2 ∈ {x̃1} ×X2

(a)

X1 ×X2 x̃2 ∈ X2 x̃1 ∈ X1 × {x̃2}

(b)

Figure 9: The element ( ̃𝑥1, ̃𝑥2) ∈ 𝑋1 ×𝑋2 can be constructed sequentially in two different ways.
(a) We can restrict our initial attention to 𝑋1 to select ̃𝑥1 ∈ 𝑋1 and then consider
the corresponding replication to select {𝑥1} × 𝑋2. (b) Alternatively we could first
select ̃𝑥2 ∈ 𝑋2 before selecting ̃𝑥1 ∈ 𝑋1 × { ̃𝑥2}.
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We have even more options for sequentially selecting component elements from a product set
with three components. For example if we decompose the product set into replications of
𝑋1 × 𝑋2

𝑋1 × 𝑋2 × 𝑋3 = ⋃
𝑥3×𝑋3

𝑋1 × 𝑋2 × {𝑥3}.

then we can specify an element by first taking an element of the third component set,

̃𝑥3 ∈ 𝑋3,

and then an element of the corresponding replication,

( ̃𝑥1, ̃𝑥2) ∈ 𝑋1 × 𝑋2 × {𝑥3},

to give
( ̃𝑥1, ̃𝑥2, ̃𝑥3) ∈ 𝑋1 × 𝑋2 × 𝑋3.

By decomposing 𝑋1 × 𝑋2, however, the latter specification can further be separated into

̃𝑥2 ∈ 𝑋2 × { ̃𝑥3}

and then
̃𝑥1 ∈ 𝑋1 × { ̃𝑥2} × { ̃𝑥3},

or
̃𝑥1 ∈ 𝑋1 × { ̃𝑥3}

and then
̃𝑥2 ∈ { ̃𝑥1} × 𝑋2 × { ̃𝑥3}.

The different ways that we can initially decompose 𝑋1 ×𝑋2 ×𝑋3 allow us to specify an element
of the product set by specifying component elements in any order.

This pattern immediately generalizes to any product space. Unfortunately the generalization
quickly become complicated because of all of the different ways that we can select from the
available components. To represent how we can sequentially build up product elements from
component elements we’ll need some careful, if a bit ungainly, notation.

We’ll start with the 𝐼 component spaces

𝑋1, … , 𝑋𝑖, … , 𝑋𝐼 ,

which together form the total product space

×𝐼
𝑖=1𝑋𝑖 = ×𝑖∈(1,…,𝐼)𝑋𝑖

= 𝑋1 × … × 𝑋𝑖 × … × 𝑋𝐼 .

I will refer to this as the joint set.
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At the same time any selection of those 𝐼 components also defines a smaller product set: for
any collection of 𝐽 < 𝐼 component indices

(𝑖1, … , 𝑖𝐽)

we can construct the product set

×𝑖′∈(𝑖1,…,𝑖𝐽)𝑋𝑖′ = 𝑋𝑖1
× … × 𝑋𝑖𝐽

.

I will refer to these as marginal sets.

If we select the components (𝑖1, … , 𝑖𝐽) then the remaining components,

(1, … , 𝑖1 − 1, 𝑖1 + 1, … , 𝑖𝐽 − 1, 𝑖𝐽 + 1, … , 𝐽)

define yet another product set. Replicating this second product set once for each element of
first product set defines a collection of cross sections sets (Figure 10),

×𝐼
𝑖′=1𝑋𝑖′ ∣ (𝑥𝑖1

, … , 𝑥𝑖𝐽
) ≡ 𝑋1 × …

× 𝑋𝑖1−1 × {𝑥𝑖1
} × 𝑋𝑖1+1 × …

× 𝑋𝑖𝐽−1 × {𝑥𝑖𝐽
} × 𝑋𝑖𝐽+1 × …

× 𝑋𝐼 .

In other words the elements of a cross section set are given by taking an element of the joint
set and then fixing, or conditioning, the component elements of the corresponding marginal
set.

A marginal set and its complementary collection of cross section sets can then be used to
reconstruct the joint set,

×𝐼
𝑖=1𝑋𝑖 = ⋃

(𝑥𝑖1 ,…,𝑥𝑖𝐽 )∈×𝑖′∈(𝑖1,…,𝑖𝐽)𝑋𝑖′

(×𝐼
𝑖′=1𝑋𝑖′) ∣ (𝑥𝑖1

, … , 𝑥𝑖𝐽
).

This then allows us to specify an element of the joint set

( ̃𝑥1, … , ̃𝑥𝑖1
, … , ̃𝑥𝑖𝐽

, … , ̃𝑥𝐼) ∈ ×𝐼
𝑖=1𝑋𝑖.

by first specifying a collection of component elements,

( ̃𝑥𝑖1
, … , ̃𝑥𝑖𝐽

) ∈ ×𝑖′∈(𝑖1,…,𝑖𝐽)𝑋𝑖′ ,

and then specifying the remaining component elements in the corresponding cross section
set,

( ̃𝑥1, … , ̃𝑥𝑖1−1, ̃𝑥𝑖1+1, … , ̃𝑥𝑖𝐽−1, ̃𝑥𝑖𝐽+1, … , ̃𝑥𝐼)
∈ (×𝐼

𝑖′=1𝑋𝑖′) ∣ ( ̃𝑥𝑖1
, … , ̃𝑥𝑖𝐽

).
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X1 ×X2 ×X3 =⋃
x3∈X3

X1 ×X2 × {x3}
{X1 ×X2 × {x3} for x3 ∈ X3} X1 ×X2 × {x̃3}

Figure 10: A product set can be decomposed into various combinations of marginal sets and
cross section sets. For example taking 𝑋3 as a marginal set reduces the three-
component product set 𝑋1 × 𝑋2 × 𝑋3 into the cross section sets 𝑋1 × 𝑋2 × {𝑥3},
one for each element of the marginal set. Fixing a particular element ̃𝑥3 ∈ 𝑋3
isolates one of those cross sections.

Because we have to account for any choice of marginal set the notation here is far from
elegant, but keep in mind that all we’re doing is formalizing what happens when we select
some component elements first and then the remaining elements second.

Given any partition of the component sets into groups we can apply this decomposition recur-
sively to decompose the joint set into a sequence of collections of cross section sets and one
terminating marginal set. For example consider five component sets 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5 which
are partitioned into three groups,

{𝑋2, 𝑋5}, {𝑋3}, {𝑋1, 𝑋4}.

This partition motivates the decomposition

𝑋1 × 𝑋2 × 𝑋3 × 𝑋4 × 𝑋5

= ⋃
(𝑥2,𝑥5)∈𝑋2×𝑋5

⋃
𝑥3∈𝑋3∣(𝑥2,𝑥5)

𝑋1 × 𝑋4 ∣ (𝑥2, 𝑥3, 𝑥5)

and the corresponding sequential specification

( ̃𝑥2, ̃𝑥5) ∈ 𝑋2 × 𝑋5
̃𝑥3 ∈ 𝑋3 ∣ ( ̃𝑥2, ̃𝑥5)

( ̃𝑥1, 𝑥4) ∈ 𝑋1 × 𝑋4 ∣ ( ̃𝑥2, ̃𝑥3, ̃𝑥5).
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In most applications we will want to separate the component sets individually, allowing us to
build a joint element up by specifying component elements one by one. For example working
through the component spaces in order gives the specification

̃𝑥1 ∈ 𝑋1
̃𝑥2 ∈ 𝑋2 ∣ ̃𝑥1

…
̃𝑥𝑖 ∈ 𝑋𝑖 ∣ ( ̃𝑥1, … , ̃𝑥𝑖)
…

̃𝑥𝐼−1 ∈ 𝑋𝐼−1∣ ( ̃𝑥1, … , ̃𝑥𝐼−2)
̃𝑥𝐼 ∈ 𝑋𝐼 ∣ ( ̃𝑥1, … , ̃𝑥𝐼−1).

That said we can work through the component spaces in any order. This flexibility allows us
to construct joint elements in whichever way is most convenient in a given application.

Because we often take sequential specification of elements for granted this formal, systematic
treatment might appear to be a bit…excessive. To the contrary this more careful perspective
will help us understand some of the more subtle aspects of probability theory on product
spaces, and how we can actually engineer sophisticated probability distributions in practice.

5 Transforming Product Spaces

We can always transform product spaces directly with monolithic maps that ignore any com-
ponent structure. These functions map an entire input product set to an arbitrary output
set,

𝑓 ∶ ×𝐼
𝑖=1 𝑋𝑖 → 𝑌

(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼) ↦ 𝑦 = 𝑓(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼).

For example algebraic operations can be interpreted as functions from the input replicated
product set 𝑋 × 𝑋 to the output set 𝑋,

𝑓 ∶ 𝑋 × 𝑋 → 𝑋
(𝑥1, 𝑥2) ↦ 𝑥 = 𝑓(𝑥1, 𝑥2).

Similarly metrics can be interpreted as functions from that same input product set to an
output positive real line,

𝑑 ∶ 𝑋 × 𝑋 → ℝ+

(𝑥1, 𝑥2) ↦ 𝑑(𝑥1, 𝑥2).
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The classification of these functions and construction of pushforward and pullback functions
follows exactly the same as for functions with general input spaces. We can say much more,
however, about functions that naturally harmonize with the component structure of an input
product space.

5.1 Component Transformations

Transformations between two product spaces exhibit a useful fragmentation. Any function
between two product sets

𝑓 ∶ ×𝐼
𝑖=1 𝑋𝑖 → ×𝐽

𝑗=1 𝑌𝑗
(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼) ↦ (𝑦1, … , 𝑦𝑗, … , 𝑦𝐽) = 𝑓(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼)

is equivalent to 𝐽 functions that map the input product set into each of the individual output
component sets,

𝑓𝑗 ∶ ×𝐼
𝑖=1 𝑋𝑖 → 𝑌𝑗

(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼) ↦ 𝑦𝑗 = 𝑓𝑗(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼).

Pushforward and pullback maps for the complete function can be derived from these component
functions.

In general these component functions mix the input components together to inform the behav-
ior in each output component set. Some functions, however, limit each of the input component
sets to informing only a single output component set. Specifically if the input product set and
output product set are built up from the same number of component sets 𝐼 then some functions
will map only one input component into each of the output components at a time,

𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖
𝑥𝑖 ↦ 𝑦𝑖 = 𝑓𝑖(𝑥𝑖).

These component-preserving functions transform each component independently of the oth-
ers.

One nice feature of component-preserving transformations is that they preserve the orientation
of grids defined from any component metric structure. For example the function

𝑓 ∶ ℝ2 → ℝ2

(𝑥1, 𝑥2) ↦ (𝑦1, 𝑦2) = (𝑥
3
2
1 , 𝑥

3
2
2 )

transforms 𝑥1 into 𝑦1 independently of the behavior of 𝑥2 and similarly transforms 𝑥2 into
𝑦2 independently of the behavior of 𝑥1. While neither of these component transformations
are isometries the rectangular structure of any metric-informed grid will be preserved (Fig-
ure 11a).

25



On the other hand the function

𝑓 ∶ ℝ2 → ℝ2

(𝑥1, 𝑥2) ↦ (𝑦1, 𝑦2 = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)

mixes the input components 𝑥1 and 𝑥2 together, skewing the product structure in the process.
Consequently grids built up from the component metric structures on the input and output
spaces will appear warped relative to each other (Figure 11b).

The behavior of component-preserving functions is completely determined by the behavior of
the component functions. For example a component-preserving function is injective, surjective,
or bijective if and only if all of the component functions are injective, surjective, or bijective.
Similarly any product structure endowed on the input product set will be preserved if each of
the component structures are preserved along the component transformations.

5.2 Projection Functions

The component-structure of a product space naturally motivates an important class of func-
tions. Consider, for example, the two-component product space 𝑋1×𝑋2 and its decomposition
into distinct replications of 𝑋1,

𝑋1 × 𝑋2 = ⋃
𝑥2∈𝑋2

𝑋1 × {𝑥2}.

If we ignore the 𝑥2 label the replications 𝑋1 × {𝑥2} become indistinguishable from each other,
collapsing into a single copy of 𝑋1 (Figure 12). This collapse projects every element of the
product set (𝑥1, 𝑥2) ∈ 𝑋1 × 𝑋2 to a component element 𝑥1 ∈ 𝑋1.

At the same time we can decompose the product set into replications of 𝑋2,

𝑋1 × 𝑋2 = ⋃
𝑥1∈𝑋1

{𝑥1} × 𝑋2.

Ignoring the 𝑥1 label collapses the replications {𝑥1} × 𝑋2 onto each other, projecting every
product element (𝑥1, 𝑥2) ∈ 𝑋1 × 𝑋2 to the component 𝑥2 ∈ 𝑋2.

More generally every product set is accompanied by surjective projection functions that map
the entire product set into the individual component sets by ignoring the other components,

𝜛𝑖 ∶ ×𝐼
𝑖′=1 𝑋𝑖′ → 𝑋𝑖

(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼) ↦ 𝑥𝑖 .

These projections functions are fully consistent with any structure endowed onto the product
set. For example the pushforward of any product structure along a projection functions returns
the component structure that was used to construct that product structure in the first place.
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Input Grid Pushforward Grid

(a)

Input Grid Pushforward Grid

Input Grid Pushforward Grid

(b)

Figure 11: Maps between product metric spaces may or may not preserve the individual com-
ponents, and this has consequences for how metric-informed grids transform. (a)
Maps between product metric spaces that do preserve the components transform
rectangular grids into rectangular grids. (b) On the other hand maps that mix the
components transform rectangular grids into grids that appear rotated, skewed, or
otherwise warped.
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X1 ×X2 =
⋃

x1∈X1

{x1} ×X2
$2(X1 ×X2) = X2

X1 ×X2 =
⋃

x2∈X2

X1 × {x2} $1(X1 ×X2) = X1

Figure 12: Decomposing a product set into replications and then collapsing those replications
on top of each other returns one of the component sets. This allows us to project
a product set onto any of its components.

Similarly the pullback of any component structure along a projection function will be always
be compatible with the corresponding product structure.

We can also construct more sophisticated multi-projection functions that return multiple
component spaces at the same time. In particular given 𝐽 < 𝐼 component indices (𝑖1, … , 𝑖𝐽)
we can define a projection function that maps the product of all of the component sets into a
product of just those selected component sets,

𝜛𝑖1,…,𝑖𝐽
∶ ×𝐼

𝑖′=1 𝑋𝑖′ → ×𝑖′∈(𝑖1,…,𝑖𝐽) 𝑋𝑖′

(𝑥1, … , 𝑥𝐼) ↦ (𝑥𝑖, 𝑥𝑗, 𝑥𝑘) .

Projection functions are particularly useful for succinctly expressing some of the more subtle
product space behaviors. As we saw in the previous section every function with a product
space input decomposes into component functions,

𝑓𝑗 ∶ ×𝐼
𝑖=1 𝑋𝑖 → 𝑌𝑗

(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼) ↦ 𝑦𝑗 = 𝑓𝑗(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼).

Those component functions, however, can be directly defined as the composition of 𝑓 with
each projection function on the output space,

𝑓𝑗 = 𝜛𝑗 ∘ 𝑓.
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Similarly the marginal sets that we introduced in Section 4 can also be defined as the outputs
of various multi-projection functions. Even better every cross section set can be defined as a
level set of a particular multi-projection function,

×𝐼
𝑖′=1𝑋𝑖′ ∣ (𝑥𝑖1

, … , 𝑥𝑖𝐽
) = 𝜛−1

𝑖1,…,𝑖𝐽
(𝑥𝑖1

, … , 𝑥𝑖𝐽
)!

In other words a cross section set can be interpreted as the subset of the joint set that projects
to a particular element of a marginal set. This projection perspective not only clarifies how
marginal and cross section sets are complementary to each other but also provides a more
compact way of denoting these sets.

5.3 Partial Evaluation

Fully evaluating a function on a product space requires the specification of an element in every
component space. For example in order to evaluate the function

𝑓 ∶ 𝑋1 × 𝑋2 → 𝑌

we need to specify ̃𝑥1 ∈ 𝑋1 and ̃𝑥2 ∈ 𝑋2 to define the particular output element

𝑓( ̃𝑥1, ̃𝑥2) = 𝑦 ∈ 𝑌 .

Providing only one element leaves an empty slot in the input product set that we need to fill
in order to complete the evaluation. For example 𝑓( ̃𝑥1, 𝑥2) still needs an element of 𝑋2 and
𝑓(𝑥1, ̃𝑥2) still needs an element of 𝑋1. That empty slot, however, defines a relationship between
the missing input component set and the output set. In other words 𝑓( ̃𝑥1, 𝑥2) implicitly defines
a function that maps elements of { ̃𝑥1} × 𝑋2 to elements of 𝑌 . Similarly 𝑓(𝑥1, ̃𝑥2) implicitly
defines a function that maps elements of 𝑋1 × { ̃𝑥2} to elements of 𝑌 .

More generally specifying the component elements

( ̃𝑥𝑖1
, … , ̃𝑥𝑖𝐽

)

reduces to the product set ×𝐼
𝑖′=1𝑋𝑖′ to the cross section set

×𝐼
𝑖′=1𝑋𝑖′ ∣ ( ̃𝑥𝑖1

, … , ̃𝑥𝑖𝐽
).

Likewise inputting those component elements into a function

𝑓 ∶ ×𝐼
𝑖=1 𝑋𝑖 → 𝑌

(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼) ↦ 𝑦 = 𝑓(𝑥1, … , 𝑥𝑖, … , 𝑥𝐼)
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defines a new function that maps the remaining elements to an output element,

𝑓�̃�𝑖1 ,…,�̃�𝑖𝐽
∶ ×𝐼

𝑖′=1 𝑋𝑖′ ∣ ( ̃𝑥𝑖1
, … , ̃𝑥𝑖𝐽

) → 𝑌
(𝑥1, … , 𝑥𝑖1−1, 𝑥𝑖1+1, … , ↦ 𝑦 = 𝑓(𝑥1, … , 𝑥𝑖1−1, ̃𝑥𝑖1

, 𝑥𝑖1+1, … ,
𝑥𝑖𝐽−1, 𝑥𝑖𝐽+1, … , 𝑥𝐼 ) ↦ 𝑥𝑖𝐽−1, ̃𝑥𝑖𝐽

, 𝑥𝑖𝐽+1, … , 𝑥𝐼 ).

This procedure is known as partial evaluation generally and Currying in the computer
science literature particularly. The mathematical notation for a partially evaluated function
can vary quite a bit. Besides

𝑓�̃�𝑖1 ,…,�̃�𝑖𝐽

it is not uncommon to see notation like

𝑓(⋅ ∣ ̃𝑥𝑖1
, … , ̃𝑥𝑖𝐽

)

where ⋅ represents the remaining unbound variables or even notation that explicitly writes out
all of the bound and unbound variables,

𝑓(𝑥1, … , 𝑥𝑖1−1, ̃𝑥𝑖1
, 𝑥𝑖1+1, … , 𝑥𝑖𝐽−1, ̃𝑥𝑖𝐽

, 𝑥𝑖𝐽+1, … , 𝑥𝐼).

While this latter notation is most direct it quickly becomes ungainly when working with more
than a few components.

Like the sequential specification of product set elements the partial evaluation of functions is
often taken for granted in practical applications. Explicitly acknowledging it, however, can
help us better understand less obvious constructions.

For example consider a set 𝑋 equipped with a binary addition operator

+ ∶ 𝑋 × 𝑋 → 𝑋
𝑥1, 𝑥2 ↦ 𝑥1 + 𝑥2.

Partially evaluating this function on the first input component effectively defines a function

𝑡�̃�1
∶ 𝑋 → 𝑋
𝑥2 ↦ ̃𝑥1 + 𝑥2

that translates each element of 𝑋 by ̃𝑥1. Consequently 𝑡�̃�1
is referred to as a translation

operator.

Similarly if we have a set 𝑋 equipped with a binary multiplication operator

⋅ ∶ 𝑋 × 𝑋 → 𝑋
𝑥1, 𝑥2 ↦ 𝑥1 ⋅ 𝑥2
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then partial evaluation effectively defines a function

𝑠�̃�1
∶ 𝑋 → 𝑋
𝑥2 ↦ ̃𝑥1 ⋅ 𝑥2

that scales each element of 𝑋 by ̃𝑥1. Fittingly 𝑠�̃�1
is often referred to as a scaling operator.

In many applications translations and scalings appear to be intuitive, but partial evaluation
allows us to formalize that conceptual reasoning. This more formal construction then helps us
recognize the assumptions needed for that intuitive to be well-defined. For example translation
isn’t well-defined on a space that isn’t equipped with the right algebraic structure!

6 Conclusion

The construction of product spaces defines a systematic way to work with multiple elements
from multiple spaces at the same time, or even multiple elements from a single space at the
same time. This has many practical benefits. For example it facilitates the development and
manipulation of the sophisticated spaces we often need for applied mathematical modeling. At
the same time it provides a language for formalizing certain computational techniques.

When working with more than a few component spaces some of the details of the formal
construction of product spaces – such as the sequential specification of product elements,
projections, and partial evaluations – require some less-than-elegant notation. That said this
awkwardness is not due to any conceptual complexity so much as the difficulty in enumerating
all of the ways that we can select from a general collection of component spaces.
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