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Previously in Chapter One we introduced measure and probability theory over sets with only
a finite number of elements. We saw in Chapter Two, however, that many of the most mathe-
matical spaces we encounter in practical applications, like the integers and the real line, feature
not a finite number of elements but rather countably infinite and even uncountably infinite
numbers of elements. Unfortunately extending measure and probability theory to more general
spaces like these is not always straightforward.

In this chapter we will investigate the difficulties in defining measure and probability theory
on general mathematical spaces, with a focus on concepts instead of technical details. We
will first discuss why measures allocated to individual elements does not, in general, provide
enough information to define a consistent allocation for all subsets. Then we will consider how
certain pathological subsets on some spaces can obstruct consistent allocations over the full
power set, and how we can systematically remove these obstructions in practice. Finally we
will present the most general form of measure and probability theory that can be applied to
any mathematical space and then discuss some common applications.

1 Allocation Over Elements

Recall that in Chapter One we first defined measures and probability distributions as allo-
cations over the individual elements in a finite set. More formally we were able to define a
measure as a function that mapped each element to its allocation of the total measure,

p: X — [0, 00]
x = p(z) .

This element-wise allocation then allowed us to define the measure allocated to subsets. In
particular the measure allocated to a subset x C X was unambiguously determined by summing
up the measures allocated to the included elements,

px) = ).

TEX

On finite spaces this construction gives us a consistent allocation in the sense that the total
measure is always preserved no matter how we might decompose the ambient set into subsets.
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Conveniently this construction does extend to spaces with countably infinite numbers of el-
ements, such as the integers. In these spaces every subset contains at most a countably
infinite number of elements and sums of measures will always converge to well-defined values.
Element-wise measure allocations on finite and countably infinite spaces are also known as
mass functions, with element-wise probability allocations also known as probability mass
functions.

Mass functions are particularly straightforward to visualize when X is not only countable
but also ordered, such as the integers or a subset of the integers. In this case we can visu-
alize the element-wise allocations with a sequence of vertical bars stacked next to each other
(Figure 1).
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Figure 1: On countable, ordered spaces we can visualize mass functions with a sequence of ver-
tical bars representing the amount of measure allocated to each individual element.

Unfortunately the element-wise construction does not extend any further. Once we consider
spaces with uncountably infinite numbers of elements, such as the real numbers, we have to
confront subsets with uncountably infinite numbers of elements where sums start to misbe-
have.

Consider for example a subset x where each of the included elements has been allocated exactly
zero measure. If x contains only a finite or countably infinite number of elements then the sum
of these zero measures always yields zero.

When x contains an uncountably infinite number of elements, however, the sum of the indi-
vidual element measures is not necessarily zero. In fact it can give any value between zero
and infinity; uncountably infinite spaces have so many elements that we can very much get
something from nothing!

Ultimately this means that on general spaces the allocation of measure to individual elements
does not provide enough information to uniquely determine what measure should be allocated
to every combination of those elements. In order to completely define a measure we need to
specify what those subset allocations are ourselves.



2 Allocation Over All Subsets

In Chapter One we also considered defining a measure by specifying allocations to each subset
in the power set,
p: 2% — [0, o]
x b p(x)
Importantly these subsets allocations needed to be consistent with each other to match the

behavior of those derived from individual element allocations. For any finite collection of
disjoint subsets we should have

I
U x) =D ulx,)-
i—1
For finite spaces this construction is excessive; the subset allocations contain an abundance

of redundant information. Because we also can derive subset allocations from element-wise
allocations on countably infinite spaces, this construction is unnecessary there as well.

On the other hand at least some subset allocation is strictly necessary for fully defining mea-
sures on uncountably infinite spaces, and hence mathematical spaces in general. The only
question is whether or not consistent subset allocations are even possible on these more sophis-
ticated spaces.

2.1 Consistent Allocations

Before answering this question let’s take a second to define exactly what kind of consistency
we need. Because finite spaces feature only a finite number of subsets we only ever have to
consider the consistency of a finite collection of subsets at a time. More formally if

{Xqy e s X4y ey X1 }
is any finite collection of disjoint subsets,
X; N Xy = 0,

then a consistent measure should give

I
(%) =y plx;).

Regardless of how many elements the ambient space contains, consistency of a measure over
any finite collection of subsets is known as finite additivity.
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More general spaces can feature infinitely many subsets, and hence different possible notions of
additive consistency. For example on a countably infinite space the subset allocations derived
from a mass function are consistent across countably infinite collections of subsets. If

{Xqy ooy Xgy oo}
is any countably infinite collection of disjoint subsets with with
Xi ﬁ Xi’q’:i — @

then

p(UX) = 3 plx).

This is known as countable additivity.

The question is then whether measures with finite additivity are sufficiently useful for practical
application or if we need to consider countably additive measures, let alone measures that might
be additive over even larger collections of subsets.

For example a common problem that arises is practice is reconstructing the measure allocated
to a general subset from the measures allocated to particularly nice subsets that are easier
with which to work. If we could always decompose a generic subset into the disjoint union of
a finite number of nice subsets then finite additivity would be sufficient for this task. On the
other hand if we could decompose a generic subset into the disjoint union of only a countably
infinite number of nice subsets then countable additivity would be sufficient. Potentially some
subsets might be decomposable only into an uncountably infinite number of subsets in which
case we would need even stronger notions of additivity!

Fortunately for us we don’t have to go to that last extreme. In turns out that on most spaces
that we’ll encounter in practice, and typical notions of “nice” subsets, countable additivity is
sufficient for reconstructing the measure allocated to more general subsets.

To demonstrate let’s consider the two-dimensional real plane R? and a measure that is par-
tially defined through it’s allocations to rectangular subsets (Figure 2). In general a non-
rectangular subset, in this case a disk, can be crudely approximated by a single rectangular
subset. The disk can be approximated more precisely as the disjoint union of many different
rectangular subsets, but that will never exact reconstruct the disk. Only when we incorporate
a countably infinite number of rectangular subsets can be reconstruct the disk without any
error.

Ultimately countable additive measures give us the mathematical flexibility we need for many
practical applications.



Figure 2: On a two-dimensional real plane R? a non-rectangular disc can be approximated,
but not exactly reconstructed, by the finite union of different rectangular subsets. In
order to exactly reconstruct a non-rectangular subset we need to include a countably
infinite number of rectangular subsets. If measures are countably additive then
we can use this decomposition to reconstruct the measure allocated to the disk by
adding up the measures allocated to the infinitely many rectangular subsets in the
reconstruction.

2.2 Sub-Additivity and Super-Additivity

Ideally we would be able to define measures that are additive over any countably infinite
collection of disjoint subsets on any space. Unfortunately mathematics is not always kind,
and many seemingly well-behaved space feature pathological subsets that obstruct countable
additivity.

Specifically many uncountably infinite spaces feature disjoint subsets that will always behave
sub-additivity,
Xl U X2 - @
Xy Uxg) < pa(xq) + p(xg)
no matter how we try to define the allocation! In other words the power set will always be

infiltrated by certain subsets that are always less than the sum of their parts and obstruct a
consistent definition of measure.

At the same time we can generally show that there exist disjoint subsets that are super-
additive,
Xl U X2 - @
(%1 Uxg) > pu(xq) + p(xg).
In other words if the measure allocated to these subsets and the measure allocated to their

union then we will always appear to end up with measure than what had been initially allo-
cated.



What makes these pathological subsets even more awkward is that we can’t actually construct
them from explicit conditions. Given typical assumptions about infinity all we can do is prove
that these subsets exist. These phantom subsets are known as non-constructive objects.

That said because the misbehaving subsets are non-constructive we don’t really need to con-
sider them in any practical application of measure theory. If we could consistently filter them
out of the full power set then we would be able to define consistent measures over the remaining
subsets, and that would be sufficient for any practical application.

3 o-Algebras

Because the term “o-algebra” is often thrown around in measure and probability theory with-
out much explanation it is often seen as an impenetrable concept that defies explanation. In
reality, however, o-algebra are simply a way to consistently filter out subsets from the power
set.

3.1 Filtering Subsets

We can always filter the power set by removing certain subsets. The difficultly is ensuring
that no application of the three set operations would ever lead us back to the excised subsets
and reveal a “hole” in the remaining collection of subsets. In other words we need our filtered
collection of subsets to be closed under the three set operations so that there is no risk of
accidentally recreating a subset outside of the collection.

In particular if the subset x C X is in our filtered collection then so too should be the com-
plement x¢. If this is true then anytime we apply the complement operator to a subset in our
collection we are guaranteed to always see another subset in our collection.

Similarly for every pair of subsets x; C X and x, C X in a filtered collection the union
X; U x, and intersection x; N xy should also be in the collection. In order to ensure closure
under repeated applications of the union and intersection operators we need the union and
intersection of any countably infinite sequences of subsets to also be in the filtered collection.

A o-algebra is any collection of subsets that is closed under complements, countable unions,
and countable intersections. In other words a o-algebra is just any consistent filtering of the
power set. I will use a calligraphic font to refer to o-algebras so that if X is a space then
X C 2% will denote a o-algebra defined on that space.

A set equipped with a o-algebra, (X, X) is known as a measurable space. I will refer to X
as the ambient set, or the ambient space if it is also equipped with additional structure.
Similarly the elements of a o-algebra are known as measurable subsets while any subsets in
the power set but not in the o-algebra are referred to as non-measurable subsets.



When non-measurable subsets are misbehaving subsets they reveals the subtle, and often
counterintuitive, pathologies inherent to that space. By working with o-algebras directly we
can avoid these awkward pathologies entirely.

3.2 Generating o-Algebras

Now that we’ve defined how a consistent sub-collection of subsets behaves we need to consider
how to construct these o-algebras in practice. Omne particularly useful way to build up o-
algebras is to generate them by repeatedly applying the three set operations to an initial
collection of subsets.

For example consider an initial collection of two subsets

{x1, %0}

Applying the complement operator gives us two subsets that fall outside of the initial collec-
tion,
{x7, x5},

Similarly applying the union operator gives

{x1 Uxy}

while applying the intersection operator gives
{x; N xy}.
To ensure closure we have to add all of these subsets to our initial collection,
{Xq, X9, X{, X5, X1 U Xg, X1 M Xg }.

At this point we iterate, applying the complement operator to every subset and the union
and intersection operators to every finite and countably infinite sub-collection of subsets to
generate an even larger collection of subsets. When the set operations no longer return new
subsets the final collection of subsets defines a o-algebra.

A convenient feature of this procedure is that if we start with a collection of constructive subsets
then we will always end up with a o-algebra that is free of any non-constructive subsets and
their pathological behaviors. To ensure that we don’t filter out any well-behaved subsets in
the process we just have to make sure that our initial collection is sufficiently large.

Conveniently when working on a topological space we already have a natural collection of
subsets that we can use to generate a o-algebra — the defining topology itself! The o-algebra
generated by repeatedly applying all three set operations to the subsets in a topology is known
as a Borel g-algebra. In other words a Borel o-algebra is the unique o-algebra comprised of all



of the open and closed subsets. If X is a topological space then I will denote the corresponding
Borel g-algebra by B .

Every space that we will consider in this book will be a topological space. Consequently
we can always use the corresponding Borel o-algebra to remove any undesired subsets that
might obstruct the definition of a consistent measures and probability distributions. Indeed
Borel g-algebras are so common that they are often take for granted, with any reference to
a “measurable space” implicitly assuming a topological space and its corresponding Borel
o-algebras to filter out any inconsistent behavior.

For example finite and countably infinite spaces are almost always equipped with discrete
topologies. Because discrete topologies contain all of the atomic sets the o-algebras derived
from them will always be the full power set. In these cases there are no pathological behaviors
that we have to avoid at all! I will refer to any measurable space (X, 2%) compatible with a
discrete topology as discrete measurable spaces.

On the the other hand the Borel og-algebra derived from the topology that defines the real line
filters out all of the non-constructive subsets and their undesired behaviors while keeping all of
the interval subsets and the subsets that we can derive from them. This results in a o-algebra
that is strictly smaller than the full power set of the real line.

3.3 Measurability Is Not Recursive

A potentially counterintuitive feature of general o-algebras is that the subsets of a measurable
subset need not themselves be measurable. For example the intervals that are measurable with
respect to the Borel g-algebra over a real line contain many non-Borel measurable subsets.

This behavior doesn’t really have any practical consequence, but it can frustrate many formal
proofs and derivations. Consequently when engaging in more technical calculations it can
be helpful to expand a given o-algebra so that the subsets of certain measurable subsets are
always guaranteed to be measurable as well; see for example the discussions at the end of
Section 4.3 and Section 5.2.

If we add subsets to a o-algebra then we also have to add the subsets that are generated
from complements, unions, and intersections. Fortunately there is a systematic construction
for this process that ensures a valid o-algebra. This means that in more applied practice we
can always safely assume a Borel g-algebra or any extension of that o-algebra that might be
needed to resolve any technical issues.

4 Measures and Probability Distributions

With all of that work we are finally ready to define a theory for allocating any conserved, but
not necessarily finite, quantity across a general mathematical space.


@sec:null
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4.1 Formal Definitions

A measure on any measurable space (X, X) is a function from the o-algebra X to the extended
positive real line,

w: X — [0, 00]
x b op(x)

that is countably additive,

p(Ux) = Z#(&‘)
for any countably infinite collection of subsets

{Xqy ey Xgy o}

that are mutually disjoint,
Xi N Xi/#i = @

On finite and countably infinite spaces we can always take X = 2% and ensure countable ad-
ditivity by allocating measure to individual elements and then deriving the measure allocated
to subsets by summing over the measure allocated to the included elements. When working
with more sophisticated ambient spaces, however, the pair (X,2%) may not admit any consis-
tent measures. In these cases we have to consider smaller o-algebras in order for measures to
exist.

A set equipped with not only a o-algebra but also a measure, in other words the triple (X, X, u)
is known as a measure space. Again I will refer to X as the ambient set or ambient space
as appropriate.

If the total measure is finite, u(X) < oo, then p is referred to as a finite measure. In this
case we can always normalize the measure by p(X) to define a proportional allocation.

A probability distribution (Figure 3) on any measurable space (X,X) is a function from
the o-algebra X to the closed unit interval,

m: X —[0,1]
X = m(x),
with
m(X)=1
and

m(U;x) = Z m(x;)

i

for any countably infinite collection of subsets

{Xqy ooy Xgy oo}
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that are mutually disjoint,

These properties are also known collectively as the Kolmogorov axioms.

X1 UXQ =X
m(X)=1 w(x1) +7m(xe) =7(X) =1

X X
x3 Uxq UX5 = X2 Uiz(}xi = X4
m(x3) + 7(xa) + 7(x5) = 7(x2) D ise T(xi) = m(xa)

WL
i

X X

Figure 3: A probability distribution defines a proportional allocation across a measurable space
such that no matter how we slice up the ambient set X into measurable subsets the
total probability is always preserved.

A set equipped with a g-algebra and a probability distribution is known as a probability
space. Sometimes the combination (X, X, 7) is also known as a probability triple.

Probability spaces are also sometimes denoted by
T~ T,

where & € X indicates the ambient set and a o-algebra is taken for granted. In words this
reads “the variable z is distributed according to 7” or “the variable x follows the distribution 7”.
That said because probability distributions are generally defined over measurable subsets and
not individual elements a more precise description be would be “the variable z takes values in
a set X that is equipped with a probability distribution 7#”. The emphasis on variables instead

11



of spaces in this notation is related to the awkward notion of a “random variable” which we
will discuss in more detail in Chapter Ten.

From a mathematical perspective probability distributions are just special cases of measures.
That special case, however, is uniquely important. For example as we’ll see in Section 6 prob-
ability distributions are naturally well-suited for many applications. Moreover the constraint
of unit total measure endows probability distributions with many exceptional theoretical prop-
erties that help us better understand those applications in practice.

Because of these distinctions measure theory and probability theory are often compartmen-
talized in the mathematics literature, with separate textbooks, terminologies, and notations
despite their common mathematical foundations.

4.2 Derived Properties
Although these definitions might appear to be a bit stark, we can derive all of the usual rules
of measure and probability theory from them.

For example consider one measurable subset that is strictly smaller than another,
X Cxy €X.

In this case we can always write

for the non-empty, measurable subset of elements that are in x, but not in x;. Applying
countable additivity then gives

because m(x3) > 0. In other words larger measurable subsets are always allocated more or
equal probability than smaller subsets.

Similarly because any subset and its complement are disjoint and combine to reconstruct the
full set we always have

or

12



In order to work with two measurable subsets x;,x, € X that might not be disjoint (Figure 4)
we have to consider the elements that are unique to each,

and
g1 ={r € X |z E€x0,7 & x4},

and the elements that are shared,

X X X

(b)

Figure 4: The union of (a) two overlapping subsets x; and x, can always be decomposed into
the union of (b) three disjoint subsets. One disjoint subset x; , encapsulates the
elements unique to x;, another x,; encapsulates the elements unique to x,, and
finally the intersection x; N x, encapsulates the elements shared by the two input
subsets.

This then allows us to decompose x;, X5, and their union into disjoint, measurable subsets
(Figure 5,)

X1 = Xq 9 U (X3 Nxy)
Xy = X5 1 U (X3 Nxy)

13



x1 = x1\2 U (x1 Nxg) xg = (x1 Nx2) Uxa\;

Figure 5: The disjoint subsets introduced in (Figure 4) can also be used to reconstruct the two
input subsets individually.

Applying countable additivity to these three decompositions gives a system of equations

(X1 ) + (X NXa)
T(Xg) = m(Xg 1) + (X1 N X3)

T(xg UXg) = (Xq 9) + 7(xg NXg) + 7Xg 1)

Adding the first two together gives
m(x1) + T(xp) = m(xq 2) + 27(xg Nxg) + 7(x; N X3)

(X1 2) + (X Nxa) + (X NXg) = m(xy) + 7T(x) — 7(x; N Xg).

Substituting this into the third equation finally gives

(% Uxg) = m(xq) + m(x) — 7(x1 N Xo).

4.3 Null Subsets

The measure allocated to a measurable subset quantifies the weight of that subset relative to
any other measurable subsets. Those measurable subsets that are allocated zero measure are
the least important subsets in terms of the overall allocation. At the same time these negligible
subsets can be useful for characterizing certain properties of a given measure.

Any measurable subset x € X that is allocated zero measure

pu(x) =0

is referred to as a null subset of the measure space (X, X, u) or, more compactly, a p-null
subset. Similarly if
m(x) =0

14



then the measurable subset x is denoted a null subset of the probability space (X, X, 7), or
simply a m-null subset.

I will denote the collection of null subsets by

X {xeX|pukx) =0} CcX.

pn=0 =

Most properties of measures depend on the detailed allocation of the total across all measurable
subsets. Some useful properties, however, are completely characterized by which measurable
subsets receive a non-zero allocation and which measurable subsets receive a zero allocation.
In other words these null properties can be completely derived from X 4=0-

Any two measures that share the same null subsets,

IM =0 = IH2:0

will share any properties that are derived from those null subsets. Consequently the overlap
in null subsets, or the lack thereof, is often a useful way to determine how compatible two
measures are with each other. We’ll formalize this compatibility when we construct density
functions in Chapter Six.

Many formal calculations become particularly straightforward when every subset of a null sub-
set is a null subset as well. This allows us to decompose null subsets into smaller subsets without
having to worry about measurability concerns. Any measure with recursively-consistent null
subsets is known as a complete measure.

Unfortunately many measures that we encounter in practice, for example many measures
defined with respect to Borel o-algebras, are not complete because not enough subsets are
measurable. In these cases extending the initial o-algebra to include every subset of the initial
null subsets is particularly useful for more technical work. That said these considerations have
little to no practical consequence.

4.4 Measures and Probability Distributions In Practice

The formal definition of measures and probability distributions tell us what form the consistent
allocation of any quantity on any measurable space has to take, but it does not necessarily
provide a way for constructing explicit allocations in practice. Specifically in almost all cir-
cumstances it is infeasible, if not outright impossible, to exhaustively specify the measure or
probability allocated to every subset in the ambient o-algebra. Constructing and then storing
infinitely large databases linking each measurable subset, or even just the non-null subsets, to
their allocations is not particularly practical!

In some cases we can define useful measures and probability distributions by specifying the
allocation to only some of the measurable subsets and then deriving the allocations to the
rest with countable additivity. For example in finite and countable spaces we need to specify

15
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only the allocations to all atomic subsets. Similarly measures over (R, Bg) can be completely
specified by allocations to all interval subsets.

That said in most of these cases those reduced allocations are still impractical to specify one-
by-one. Because of that our introduction to general measure and probability theory will have
to remain a bit abstract, without many explicit examples, for the time being.

In applied problems measures and probability distributions are almost always defined algo-
rithmically, with rules to evaluate the measure or probability allocated to a subset on the fly
instead of storing and retrieving the allocation from an exhaustive specification. We will intro-
duce two of these algorithmic representations, and use them to define many useful allocations,
in Chapter Five and Chapter Eight.

5 Uniform Measures

Any given measurable space (X, X) can be equipped with infinitely many measures and prob-
ability distributions. Some of these objects, however, are more useful in applied practice than
others.

This section will introduce two measures that encode distinct notions of uniformity that are
applicable to different types of ambient spaces. In the following chapters we will see how the
properties of these uniform measures make them particularly useful in practical applications
of probability theory.

5.1 The Counting Measure On Discrete Measurable Spaces

Intuitively a uniform measure should allocate the same measure to as many measurable subsets
as possible. The consistency of measures, however, limits just how many subsets can receive
the same allocation. For example if two disjoint subsets x; € X and x, € X are allocated the
same measure,

(%) = p1(xa) = pig,

then their union will be allocated the measure,
(x1) U plxa) = pu(xq) + plxe) = 2 po;

all three allocations will be equal only if 1, = co.

In order to define a notion of uniformity that doesn’t abuse infinity we need to restrict our
consideration from the entire g-algebra to collections of measurable subsets that we want to
behave in the same way. If this collection is large enough then we can completely define a
uniform measure by enforcing the same allocation to those distinguished subsets.

16



For example on any countable measure space (X,2%) a natural collection of subsets to con-
sider are the atomic subsets. Because in this case the measure allocated to these subsets
completely specifies the allocations to every other subset we can fully define a uniform mea-
sure by a enforcing the same allocation to each element. This results in a constant mass
function (Figure 6).

w(z)

Figure 6: On a countable space any uniform measure allocates the same measure to every
individual element resulting in a constant mass function.

In particular the counting measure on the discrete measurable space (X, 2%) is defined by
a unit allocation to each atomic set,

x({z}) = 1.
Equivalently we can define the counting measure with a uniform mass function that assigns
each element to a unit allocation,

x(z) = 1.

Given these element-wise allocations we can derive the measure allocated to any other subset
x C X by countable additivity,

X0 =Y x({z})

rex

:Zl’

Trex
which always results in the total number of elements in x. The total counting measure,
X(X)=>"1,
zeX

just counts the number of elements in the ambient set. In other words a counting measure
formalizes our intuitive notion of counting discrete objects.

An immediate consequence of these derived allocations is that any subset with the same number
of elements will receive the same allocation. Uniformity over the individual elements induces
uniformity over other subsets as well.

17



When there are only a finite number of elements in X the total measure will also be finite. In
this case we can normalize the counting measure into a uniform probability distribution,

Z‘TEX 1
Z9ceX 1
which quantifies the proportion of all of the elements in X that are contained in x. If there are

an infinite number of elements in X then this normalization is no longer possible; for example
there is no well-defined notion of a uniform probability distribution over the integers Z.

m(x) =

Counting measures are not the only uniform measures that we could define over a countable
ambient set. More generally we can define a uniform measure by allocating any positive real
number ¢ € R' to each element,

k({z}) =c.
That said these other uniform measures are somewhat redundant in the sense that their allo-
cations can be recovered by scaling the corresponding counting measure allocations,

K(x) = ¢ x(x).

One important feature of a counting measure, indeed any uniform measure, is that every subset
except the empty set receives a non-zero allocation. That is to say that the empty set is the
only x-null subset.

5.2 The Lebesgue Measure On Real Lines

Unfortunately on uncountable spaces element-wise allocations do not completely define mea-
sures. In order to generalize any notion of uniform measure we have to specify a larger class
of measurable subsets that should receive equal allocations.

An uncountable set alone, however, offers no criteria for preferring any collection of subsets to
any other, and hence no criteria for defining a consistent notion of uniform measure. Additional
structure on X, however, may be able to break this ambiguity.

Consider for example a real line R equipped with an appropriate ordering, algebra, metric,
and topology as discussed in Chapter Two, that is a particular rigid real line or a particular
parameterization of a flexible real line. Using the ordering we can construct closed interval
subsets,

[z, 20 ={z € R |z <z <y}

We can then use the metric to characterize these intervals by the distance between the end
points,
L( [z, 23] ) = d(@y,25) = w5 — 24,

otherwise known as the interval length. Moreover if we use a Borel g-algebra derived from
the real topology then these closed intervals will all be measurable subsets.

18
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Any notion of uniformity that is compatible with all of this structure should treat all interval
subsets with the same length in the same way. In other words a uniform measure over R should
allocate the same measure to all equal-length intervals (Figure 7). For example because the
intervals

L([=2,—1]) = L([5,6]) = L([150, 151] )
all have the same length any uniform measure should give
u([=2,—1]) = p([5,6]) = p([150,151]).

Likewise because
L([-350,—300]) = L([0,50])

we should have

and so on.
< > - >
< > <-- >

Figure 7: The structure that defines a real line also distinguishes interval subsets that we can
characterize by their length. Any uniform measure over a real line should allocate
the same measure to any interval with the same length.

The easiest way to accomplish this uniformity is to allocate to each interval a measure directly
equal to the its length,

A([wy, 0] ) = L([2q, 23] ) = w5 — 24

Allocations to more general measurable subsets can then be derived from these interval al-
locations. The resulting uniform measure over a given real line is known as the Lebesgue
measure.

Just as the counting measure formalizes intuition notions of counting on countable spaces, the
Lebesgue measure formalizes intuitive notions of length on a real line. This formalization of
length, however, is a bit more subtle. Counting behaves the same on all countable spaces, but
length can behave differently across different real lines!

Two real lines with incompatible metrics — different rigid real lines or different parameteriza-
tions of a flexible real line — will assign different lengths to the same intervals, resulting in
different Lebesgue measures. When there might be any chance of confusion we have to be
careful to communicate which real line we’re using in any given application.
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Because the total Lebesgue measure is infinitely large,

AR) = lim A([—z,z])

Tr—00

= lim 2 |z|
T—00

= 007

it cannot be normalized into a probability distribution. As with the integers there is no
well-defined notion of a uniform probability distribution over a real line.

Every other uniform measure over a real line is defined by allocating a measure to each interval
proportional to its length,
v(la,b]) ocI(fa,b]).

Consequently every uniform measure over a real line reduces to a constant scaling of the
Lebesgue measure,
v(x) o< A(x),

similar to how every uniform measure over countable spaces reduces to a scaling of the counting
measure.

By definition the Lebesgue measure on any real line will allocate zero measure to individual
points,

A{z}) = Al[z, 2])
=d(z,x)
= 0.

Indeed any measurable subset with only a countable number of elements will also be A-null,

A(x) = A(U{z;})
= Z A({z;})

:zl:o

=0.

Critically these properties follow from d(z,x) = 0 which is true for any well-behaved metric.
Two real lines with incompatible metrics might feature different Lebesgue measures, but those
Lebesgue measures will always share the same null subsets and hence share any properties
derived from those null subsets. Moving between rigid real lines or parameterizations of a
flexible real line will change the Lebesgue measure but not these shared properties.

Let’s conclude on a more technical note. Allocations based on interval lengths can be used to
derive consistent allocations over any subset constructed from open and closed subsets, and
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hence every measurable subset in the Borel o-algebra B. They can also be used, however, to
derive null allocations to many subsets that are not in Bp.

Extending By to include these additional null subsets results in a larger o-algebra known as the
Lebesgue o-algebra. Conveniently if we define the Lebesgue measure with respect to this
larger o-algebra then it becomes a complete measure which, as we have previously discussed,
facilitates many technical results and is consequently preferred in more formal mathematical
references.

Many references reserve the term “Lebsegue measure” for the complete uniform measure de-
fined over the Lebesgue o-algebra and introduce the term “Borel measure” for the incomplete
uniform measure defined over the smaller Borel o-algebra By. That said because the differ-
ences between these definitions are limited to null subsets they can be effectively ignored in
most practical applications.

5.3 The Lebesgue Measure On Multivariate Real Spaces

The construction of the Lebesgue measure on a real line immediately generalizes to multivariate
real spaces built up from multiple real lines at the same time. Within each component real
line we can allocate a uniform Lebesgue measure to each interval subset,

A [xl,i7x2,i] ) = ’x2,i - 9511’

To ensure uniformity over the composite product space we need to allocate to each rectangular
subset a measure equal to the product of these component allocations,

I

A Xf:1[$1,iax2,i]) = H A [5'31,2'7552,1‘] )
i=1

I

|$2,i - ﬂC1z|
i=1

As in the one-dimensional case allocations to more general measurable subsets are derived
from these rectangular allocations.

Intuitively the Lebesgue measure on R quantifies length. The Lebesgue measure over R2,
however, quantifies area. More generally the Lebesgue measure over R! quantifies volume.

5.4 Uniformity, Ignorance, and Information
The concepts of ignorance and information are related to uniformity; formalizing the rela-

tionships between these concepts, however, is subtle. In order to avoid confusing these concepts
we have take care to recognize not only their similarities but also their differences.
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When two elements of a countable space are allocated the same measure then the overall
allocation will be the same even if we permute those two elements before allocating measures.
In other words any measure that allocates the same measure to two elements is not able to
distinguish between any permutations of those elements.

The more regular the individual allocations are the less sensitive the resulting measure will be
to any rearrangement of the elements. Conversely the more the allocations vary from element
to element the more the resulting measure will able to discern one permutation from another.
Informally we might say that the more uniform the measure the less information it encodes.
Because a uniform measure allocates the same measure to every element it is ignorant to
any bijective transformation of the elements, capturing the least information possible on a
countable space.

On uncountable spaces these concepts become more delicate. The allocations defined by the
Lebesgue measure, for example, are not invariant to arbitrary transformations of the real
line. Any transformation that warps the metric will also warp lengths and hence the mea-
sures allocated by the Lebesgue measure. Instead the Lebesgue measure is ignorant only to
transformations that preserve distances.

In order to formalize heuristic concepts like “ignorance” and “information” we have to embrace
a bit more abstraction. Recall that in Chapter Two we discussed the notion of a structure-
preserving transformation. More generally if ¢ : X — X is a structure-preserving automor-
phism then we say that the structure is symmetric to ¢ while the transformation ¢ is a
symmetry of the structure.

In other words if ¢ is a symmetry of a structure ¢ then the behavior of ¢ is the same before
and after we apply the transformation. The structure cannot detect whether or not we apply
the transformation. For example on a real line the metric is symmetric to translations,

d(ty, (11),t,,(75)) = [t (22) —t,, (21)]
= |wy + Ts — (74 +$3)|
= |y — 4|

= d(ry,25).

Some structures admit multiple symmetries at the same time. For example the discrete topol-
ogy on a countable set is invariant to any permutation of the elements while the metric on a
real line is invariant to all translations of the elements. The more symmetric a structure is the
less it can distinguish between arbitrary transformations to the ambient set. If we formalize
information as the ability of a structure to distinguish between transformations of the ambient
set then the more symmetric a structure is the less information it encodes.

From an abstract perspective measures and probability distributions are, like orderings, alge-
bras, metrics, topologies, and o-algebras, just structures that we can endow onto a set. The
more invariant a measure is to transformations of that set the less information it will contain.
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We will more formally consider how measures transform, and hence how to precisely define
symmetries of a measure, in Chaper Seven.

Uniform measures are built to be symmetric to at least some transformations and hence
encode less information than other measures. For example the counting measure is invariant
to any permutation of a countable ambient set while the Lebesgue measure is invariant to any
translation of a real line. We can also extend this construction to more elaborate spaces, for
instance defining uniform measures on spheres that are invariant to any rotation.

Critically, however, not every uniform measure is invariant to every possible transformation
of the ambient set; some uniform measures are more informative than others! Consequently
notions of uniformity do not define any universal notions of ignorance, just ignorance to the
particular transformations that are used to define uniformity in a given context.

In practice this means that we have to be careful not to make broad claims about uniform
measures that are least informative or most ignorant but instead specify with respect to which
transformations a measure might be least informative or most ignorant.

6 Interpretations of Measure And Probability

To this point our treatment of measure and probability theory has been purely mathematical.
A measures defines the allocations of some abstract conserved quantity across some abstract
measurable space; a probability distribution defines a proportional allocations. This mathe-
matical construction cannot be endowed with any particular interpretation until we use it to
model something.

In this section we’ll review some of the most common applications of measure and probability
theory and the particular interpretations those applications create.

6.1 Modeling Physical Distributions

One immediate application of measure theory is to model the behavior of a physical quantity,
such as mass or electric charge. For example physical mass can be distributed across a solid
object in a variety of different ways, with the exact distribution affecting how that object
interacts with the surrounding environment. Similarly the distribution of charge across the
surface of a conducting object defines its electrostatic properties.

In some physical systems the distribution can also change with time and influence the dynamics
of the system. Time-dependent measures that quantify how the distribution of a physical
quantity evolves are a common feature of many mathematical physical theories.
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6.2 Modeling Populations

A similar application is modeling the selection of individuals, or the properties of individuals,
from a larger population. Each time we sample a subset of individuals from the population we
will observe a different ensemble of behaviors, such as political or consumer preferences, heights,
or ages. The heterogeneity of these characteristics across the population can often be quantified
with measures, and their relative occurrences modeled with probability distributions.

For example is 30% of the individuals in a population have a height between 0 feet and 5 feet
then a probability distribution modeling the variation in heights would give

7(]0,5]) = 0.3.

6.3 Modeling Frequencies

An application particular to probability theory concerns the frequencies of repeated events.

Consider an abstract event whose outcomes take unpredictable values in some space X. Per-
fectly replicating the circumstances of this event N times defines a sequence of values in Y,

{zy, ., xy )

While we cannot predict what values the individual events in this sequence will take, we may
be able to characterize how often certain outcomes appear relative to others. In particular we
can define the frequency of a subset x C X by the number of events that that take values in
X’

where
1, zex

ﬂx(:v>={ 0, =¢x

Replicating the event a countably infinite number of times defines the asymptotic or long-
run frequency of a subset,

F6) = lim frlx)

N
[
o Zabe)

N—o0 N

In other words the more frequent subsets contain more common event outcomes.

If the frequencies are the same for any sequence of events then we can model them with
probability theory. Specifically we can interpret the allocated probabilities as the proportion
of the total event outcomes that fall into each subset of outcome values.
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In this case the particular ordering of the event sequences doesn’t matter and we can also in-
terpret them as defining a population of possible events. From this perspective the application
of probability theory is equivalent to the application in the previous section. At the same time
if we interpret repeated samples from a population as events then the population probabilities
can be interpreted as frequencies.

6.4 Modeling Uncertainties

Probability theory can also be used to consistently quantify uncertain information.

Consider a space of possible statements X. Under perfect knowledge we would be able to
specify a particular statement x € X as true with all other statements in X being false. In
other words certainty is quantified with binary true/false assignments. When our knowledge
is not quite so certain, however, we have to soften those claims.

To quantify uncertain information we have to generalize beyond binary true/false assignments
to continuous values that interpolate between absolute truth and falsity. The larger the value
we assign to a subset of statements the more our uncertain information supports one of those
statements being true. Conversely the smaller the value we assign to a subset the more our
uncertain information supports all of the included statements being false.

Applying probability theory allows us to enforce consistent uncertainty assignments across
all of the possible statements. The individual probability allocations can then be interpreted
as quantifying how strongly our information supports that one of the statements within a
measurable set is true. In this setting the allocated probabilities are sometimes referred to as
“plausibilities”, “credibilities”, and “beliefs”.

For example the property that m(X) = 1 corresponds to the fact that at least one of the
statements in X always has to be true. A probability distribution that concentrates around
the statement z encodes confidence that one of the statements near x is true. The singular
limit where all of the available probability collapses onto a single statement, w({z}) = 1,
communicates certainty that x is true.

This kind of probabilistic uncertainty quantification can be interpreted in many ways. For
example we can use it out model the personal, subjective beliefs that an individual holds
about the behavior of a system. In particular we can use it to model our own specific beliefs.
At the same time we can use it to model the collective understanding of entire communities.
We can also use probability theory to model only certain aspects of individual or community
knowledge and not attempt to quantify the entirety of that knowledge at once.

More formally this application defines one way to generalize classical propositional logic to a
many-valued logic. Using probability theory to generalize other logical systems can sometimes
also be possible, although the technical details quickly become more complicated.
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6.5 Everyone Play Nicely

A key point of confusion in probability theory is the confounding of its abstract mathematical
structure with the interpretations that arise in particular applications. This confusion is made
all the worse by the long history of attempts to derive probability theory from these particular
applications.

For example many have tried to derive probabilities as asymptotic frequencies of physical
events. The key motivations of this approach is that the resulting probabilities would be
objective in the sense that everyone who could implement those infinite trials would attain
the same probabilities. Even if we ignore the impracticality of perfectly repeating an event an
infinite number of times within a finite lifetime it turns out that there are also some subtle
mathematical complications with this approach. For a comprehensive discussion see Diaconis
and Skyrms (2017).

Similarly many have tried to derive probability theory from uncertainty quantification. For
example the Cox postulates (Van Horn, Kevin S. (2003)) define basic intuitions about uncer-
tainty quantification. On simpler spaces these rules are equivalent to probability theory, but
that equivalence doesn’t persist to more general spaces. Because of that this approach is not
able to recover the full generality of probability theory.

A common reaction to these technical difficulties is to resort to a sort of philosophical bait and
switch. When one cannot derive probability theory from a particular application one might
define probability theory abstractly, as we have done above, but then impose an arbitrary
restriction that it can only ever be applied to that one application. For example those trying to
derive probability theory from frequencies might argue that probability theory can be applied
to model only frequencies, in which case all probabilities are frequencies. Others trying to
derive probability theory from the Cox axioms might argue that any application of probability
theory always models uncertain information.

These interpretational restrictions then force some awkward philosophical contortions when
trying to apply probability theory in practice. For example after imposing that all probabilities
are frequencies the only way to model uncertainty in the value of some quantity is to treat it
as the outcome of some hypothetical, and completely non-existent, event. The introduction of
these hypothetical events to real events makes the entire system more difficult to understand.

In this book we will avoid these restrictions, respect the full generality of probability theory,
and take advantage of any consistent applications that might be useful in a given problem.
Indeed we will often take advantage of multiple applications at the same time.

Consider, for example, a binary space X = 0,1 that corresponds to the two sides of a coin. In
particular let 0 denote tails and 1 denote heads. Any probability distribution over X can be
quantified with the probability p € [0,1] allocated to the point 1, which gives the consistent
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probability allocations

There are many ways to flip a coin, but let’s say that we flip our coin in a way that results in
an unpredictable sequence of heads and tails. The asymptotic frequencies of these outcomes
can then be modeled with an application of probability theory. In other words we can use a
probability distribution 7(+; p) to model the physical outcomes of the flips.

At the same time we use probability theory to model any uncertainty in which of the possible
frequency models best matches the true behavior of the coin. In particular we can construct
a probability distribution over the unit interval to quantify how compatible each probability
allocation p € [0,1] is with our knowledge of the coin.

If we have a bag of I coins then could also model the variation in the probability parameters

{pla 7pi7 7pI}

for each coin. In this case we can apply probability theory once again, this time to model the
population of coin behaviors.

To be clear the interpretations inherent to particular applications of probability theory are
important for ensuring that we implement those applications correctly in practice. Elevating
one interpretation to the exclusion of others, however, excludes the corresponding applications
and limits the full potential of probability theory. To take full advantage of the practical utility
of probability theory we have to respect all of consistent applications!

7 Conclusion

Conceptually measure and probability theory are straightforward. Measure theory quantifies
how we can consistently allocate a conserved quantify across a general mathematical space
and probability theory considers the special case of proportional allocations. In order to
quantify that conceptual simplicity, however, we need to resort to some careful mathematics.
In particular we need to incorporate o-algebras to surgically remove any pathological behavior
that can arise, even on seemingly well-behaved spaces such as the real line, and obstruct
consistent allocations.

Once we’ve safely constructed these theories in full generality we can use the apply abstract
mathematics to model particular systems. Within these applications the math inherits partic-
ular interpretations, but we have to be careful to not take these circumstantial interpretations
too seriously lest we abandon the full utility of the abstract mathematics.
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The technical exploration of measures and probability distributions goes far beyond the intro-
duction in this chapter. Unfortunately many textbooks that cover this material can be difficult
to parse without extensive mathematical experience. My personal favorite is Folland (1999)
which, while technically rigorous, provides more exposition and motivation than I have found
in other treatments.
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