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Despite its infamous reputation the foundations of probability theory are quite straightforward.
Much of the mathematical difficulty arises only when we implement probability theory on
elaborate sets like the real numbers, and most of the philosophical difficulty arises only when
trying to assign an interpretation to the mathematics. In this chapter we will avoid this
baggage by introducing the basics of abstract probability theory on the simplest, nontrivial
set: a collection of a finite number of elements.

1 Finite Sets

A finite set contains a finite number of distinct elements,

𝑋 = {𝑥1, ..., 𝑥𝑁}.
The numerical index here allows us to differentiate the between the 𝑁 individual elements but
it does not necessarily imply that the elements have any particular ordering to them. To avoid
any assumption of ordering I’ll use the five element set (Figure 1)

𝑋 = {□, ♣, ♢, ♡, ♠}
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for demonstration.

�
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♦
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X = {�,♣,♦,♥,♠}

Figure 1: A finite set contains a finite number of elements. This particular set contains five
elements.

In practical applications of probability theory the abstract elements 𝑥𝑛 will model meaningful
objects, but in this chapter I will avoid any particular interpretation and instead focus on the
mathematical concepts. That said when 𝑋 is intended to capture all of the objects of interest
in a given application I will refer to it as the ambient set.

Once we’ve defined an ambient set we have various ways of organizing its individual elements
and manipulating those organizations.

1.1 Subsets

A subset of 𝑋 is any collection of elements in 𝑋. To avoid any ambiguity I will exclusively
use lowercase roman letters 𝑥 to denote a variable element in the ambient set 𝑋 and lowercase
san serif letters x to denote a variable subset.

For example x = {□, ♢, ♡} is a subset of 𝑋 = {□, ♣, ♢, ♡, ♠} (Figure 2). Importantly there
is no notion of multiplicity in the concept of a subset, just membership: a subset can include
an element 𝑥𝑛 but it cannot include it multiple times.

If x is a subset of the ambient set 𝑋 then we write x ⊂ 𝑋. When x might contain all of the
elements of 𝑋, in which case x = 𝑋, then we write x ⊆ 𝑋. Note that some authors use ⊂ to
refer to both circumstances, but I prefer the more precise notation.

Subsets are recursive objects. Selecting any elements from a subset yields a new subset. For
example the collection {♢, ♡} is a subset of both the previously introduced subset,

{♢, ♡} ⊂ {□, ♢, ♡},
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Figure 2: A subset x ⊂ 𝑋 is any collection of elements from the ambient set 𝑋. Here x =
{□, ♢, ♡} contains just three of the five elements in 𝑋 = {□, ♣, ♢, ♡, ♠}.

and the full ambient set,
{♢, ♡} ⊂ 𝑋.

More formally a subset x′ is a subset of another subset x if and only if all of the elements in
x′ are also in x.

Regardless of how many elements a finite set 𝑋 contains we can always construct three special
types of subsets. The empty set ∅ = {} contains no elements at all. On the other hand the
entire set itself can be considered a subset containing all of the elements. A subset containing
a single element is denoted {𝑥𝑛} and referred to as an atomic set.

There are
(𝑁

𝑛 ) = 𝑁!
𝑛!(𝑁 − 𝑛)!

ways to select 𝑛 elements from a finite set of 𝑁 total elements, and hence (𝑁
𝑛) total subsets of

size 𝑛. For example there is only one subset that contains no elements,

(𝑁
0 ) = 𝑁!

0!(𝑁 − 0)! = 𝑁!
𝑁! = 1,

which is just the empty set. Similarly there is only one subset that contains all of the ele-
ments,

(𝑁
𝑁) = 𝑁!

𝑁!(𝑁 − 𝑁)! = 𝑁!
𝑁! = 1,

which is just the full set itself. On the other hand there are

(𝑁
1 ) = 𝑁!

1!(𝑁 − 1)! = 𝑁

distinct atomics sets that contain a single element, one for each element in 𝑋.
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Counting all of the subsets of all possible sizes gives

𝑁
∑
𝑛=0

(𝑁
𝑛 ) = 2𝑁

possible subsets that we can construct from a finite set with 𝑁 elements. Those from a
computer science background might recognize that this is equivalent to needed 𝑁 bits to
specify each subset, one bit for the inclusion or exclusion of each element.

The collection of all subsets is itself a finite set with 2𝑁 elements.
We refer to this set as the power set of 𝑋 and denote it 2𝑋.

When the ambient set, and hence all of the possible elements that any subset might contain,
is fixed the prefix “sub” is sometimes dropped, with all subsets simply referred to as sets. For
example collections of elements might be denoted “sets” when one takes the ambient set for
granted and “subsets” when one wants to explicitly acknowledge the context of the ambient set.
Precise terminology, however, can vary strongly between disciplines and even individuals.

1.2 Subset Operations

We can always construct subsets element by element, but we can also construct them by
manipulating existing subsets.

For example given a subset x ⊂ 𝑋 we can construct its complement by collecting all of the
elements in 𝑋 that are not already in x. The atomic set x = {♢} contains the lone element ♢
and its complement contains the remaining elements (Figure 3)

x𝑐 = {□, ♣, ♡, ♠}.

By construction the complement of the empty set is the entire set, ∅𝑐 = 𝑋, and the complement
of the full set is the empty set, 𝑋𝑐 = ∅.

�

♣

♦
♥

♠

x = {♦}

�

♣

♦
♥

♠

xc = {�,♣,♥,♠}

Figure 3: The complement of a subset x is the subset x𝑐 consisting of all elements in the ambient
set that are not in x.
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More formally the construction of complementary subsets defines a unary operation that takes
in a subset as input and outputs the complementary subset,

⋅𝑐 ∶ 2𝑋 → 2𝑋

x ↦ x𝑐 .

The top line of this notation denotes the collection of all possible inputs and outputs, here
both the power set, while the bottom line denotes the action on a particular input, here a
subset mapped into its complement. For example applying the complement operator to the
subset x = {♣, ♠} gives

x𝑐 = {♣, ♠}𝑐 = {□, ♢, ♡}.

We can also construct subsets from more than one subset. Consider, for example, two subsets
x1 = {□, ♡} and x2 = {□, ♠} (Figure 4). The collection of all elements that are contained in
either subset is itself a subset,

{□, ♡, ♠} ⊂ 𝑋,
as is the collection of all elements that are contained in both subsets,

{□} ⊂ 𝑋.

These derived subsets are referred to as the union,

x1 ∪ x2 = {□, ♡} ∪ {□, ♠} = {□, ♡, ♠},

and intersection,
x1 ∩ x2 = {□, ♡} ∩ {□, ♠} = {□},

respectively (Figure 5). Note that the union and intersection are both symmetric in the sense
that either order of the input subsets results in the same output subset,

x1 ∪ x2 = x2 ∪ x1

and
x1 ∩ x2 = x2 ∩ x1.

Two subsets are disjoint if they don’t share any elements; in this case their intersection is the
empty set,

x1 ∩ x2 = ∅.
The union and intersection of a subset with itself returns that subset,

x ∪ x = x ∩ x = x.

Because the empty set does not contain any elements its union with any subset returns back
that subset,

x ∪ ∅ = ∅ ∪ x = x,
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x1 = {x�, x♥}

x2 = {x�, x♠}

Figure 4: We can manipulate two subsets into a new subset in various ways.

�

♣

♦
♥

♠

x1 = {x�, x♥}

x2 = {x�, x♠}

x1 ∪ x2 = {x�, x♥, x♠}

x1 ∩ x2 = {x�}

Figure 5: The union of two subsets, x1 ∪ x2, is a subset containing all of the elements in either
input subset. On the other hand the intersection of two subsets, x1 ∩ x2, is a subset
containing just the elements that occur in both input subsets.
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and its intersection with any subset returns the empty set,

x ∩ ∅ = ∅ ∩ x = ∅.

Similarly the union of any subset with the full set returns the full set,

x ∪ 𝑋 = 𝑋 ∪ x = 𝑋,

and the intersection of any subset with the full set returns back the subset,

x ∩ 𝑋 = 𝑋 ∩ x = x.

Because they require two inputs the union and intersection define binary operations that
consume two input subsets and return a single output subset,

⋅ ∪ ⋅ ∶ 2𝑋 × 2𝑋 → 2𝑋

x1, x2 ↦ x1 ∪ x2

and

⋅ ∩ ⋅ ∶ 2𝑋 × 2𝑋 → 2𝑋

x1, x2 ↦ x1 ∩ x2.

Here 2𝑋 × 2𝑋 denotes the collection of all pairs of subsets.

2 Measure and Probability Over Elements

Measure theory, and its special case of probability theory, is often burdened with intricate if
not mysterious interpretations. From a mathematical perspective, however, measure theory
simply concerns the consistent allocation of some abstract quantity across the ambient set.

Consider a reservoir of some positive, continuous, and conserved quantity, 𝑀 ∈ [0, ∞] (Fig-
ure 6). Because 𝑀 is conserved any amount 𝑚𝑛 that is allocated to the element 𝑥𝑛 ∈ 𝑋 has
to be depleted from the reservoir, leaving less to be allocated to the remaining elements.

We have to be careful if the total content of the reservoir 𝑀 is infinite. In this case we can
allocate an infinite amount from the reservoir while still having an infinite quantify left. At
the same time allocating an infinite amount can depleting the reservoir completely or even
leave any finite quantity. Infinity is, at the very least, mathematically awkward.

To make the mathematics as useful as possible we will avoid endowing 𝑀 with any partic-
ular meaning for the time being. Instead interpretations will arise only when we use these
allocations to model meaningful systems.
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Figure 6: Measure theory concerns the allocation of some continuous and positive quantity 𝑀
over the individual elements of the ambient set.

An exhaustive allocation of 𝑀 across the ambient set ensures that the reservoir is completely
emptied. In another words all of 𝑀 has to be allocated to the elements 𝑥𝑛 ∈ 𝑋.

For example consider our demonstrative ambient set 𝑋 = {□, ♣, ♢, ♡, ♠}. If we allocate 𝑚□
to □ then that leaves 𝑀 − 𝑚□ remaining to allocate to the other four elements (Figure 7a).
Allocating 𝑚♣ to ♣ depletes the reservoir a bit more (Figure 7b). At the end we have to
allocate all

𝑀 − 𝑚□ − 𝑚♣ − 𝑚♢ − 𝑚♡

that remains to ♠ to completely empty the reservoir (Figure 7e).

A measure is any consistent allocation of the quantity 𝑀 to the elements of an ambient set.
Mathematically any measure over a finite set can be characterized by 𝑁 numbers (Figure 8)

𝜇 = {𝑚1, … , 𝑚𝑁}

that satisfy
0 ≤ 𝑚𝑛

and
𝑁

∑
𝑛=1

𝑚𝑛 = 𝑀.

For example any measure over the five-element set 𝑋 = {□, ♣, ♢, ♡, ♠} is specified by any five
positive numbers {𝑚□, 𝑚♣, 𝑚♢, 𝑚♡, 𝑚♠} satisfying

𝑚□ + 𝑚♣ + 𝑚♢ + 𝑚♡ + 𝑚♠ = 𝑀.

The larger 𝑚𝑛 the more of 𝑀 is allocated to the element 𝑥𝑛. Following this terminology we
will also refer to 𝑀 as the total measure and 𝑚𝑛 as the measure allocated to 𝑥𝑛.
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Figure 7: Because the total quantity 𝑀 is conserved every allocation 𝑚𝑛 to an element 𝑥𝑛 ∈ 𝑋
depletes the amount available for the allocation to the remaining elements. An
exhaustive allocation leaves nothing left in the initial reservoir after each element
has received its allocation.
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m� +m♣ +m♦ +m♥ +m♠ = M

Figure 8: A measure 𝜇 over the finite set 𝑋 is any consistent allocation of 𝑀 to the elements
𝑥𝑛 ∈ 𝑋. Every measure can be characterized by 𝑁 numbers 𝑚𝑛 that sum to 𝑀 , or
equivalently a function that maps each element 𝑥𝑛 to its allocated measure 𝑚𝑛.

If the total measure is infinite, 𝑀 = ∞, then at least one of the elements in 𝑋 has to receive
an infinite allocation in order to empty the reservoir. We can also consistently allocate infinite
measure to multiple elements, or even all of the elements, at the same time. Infinite measures
can be very generous in their allocations.

The allocation {𝑥𝑛, 𝑚𝑛} defined by a measure 𝜇 can also be organized into a function that
maps each element to its associated allocation,

𝜇 ∶ 𝑋 → [0, ∞]
𝑥𝑛 ↦ 𝑚𝑛 = 𝜇(𝑥𝑛).

A nice conceptual benefit of this functional perspective is that instead of thinking about the
global allocation 𝑚1, … , 𝑚𝑁 all at once we can isolate local allocations by evaluating 𝜇 at only
a single input 𝑚𝑛 = 𝜇(𝑥𝑛).
In general there are an infinite number of ways to allocate a total measure to the elements of
a finite set, and hence an infinite number of measures that we can define over that set. I will
denote the collection of all possible measures over 𝑋 as ℳ(𝑋).
Within this collection there are a few notable examples. For example a singular measure
allocates the total measure 𝑀 to a single element, leaving the rest with nothing (Figure 9a).
On the other hand a uniform measure allocates the same measure 𝑀/𝑁 to each element
(Figure 9b). On finite sets there are 𝑁 distinct singular measures, one for each distinct element,
and a single unique uniform measure.

10



x1

x2

x3
x4

x5

0

0

0
0

M

(a)

x1

x2

x3
x4

x5

M/5

M/5

M/5
M/5

M/5

(b)

Figure 9: A singular measure (a) allocates the total measure to a single element while the
uniform measure (b) spreads the total measure to each element evenly.

Perhaps the most important class of measures, however, are measures where the total measure
is finite, 0 < 𝑀 < ∞. Appropriately enough we refer to these as finite measures.

What makes finite measures so special is that we can always reframe the allocation they define
into a relative one. Instead of considering the absolute measure allocated to each element 𝑚𝑛
we can consider the proportion of the total measure allocated to each element, (Figure 10)

𝑝𝑛 = 𝑚𝑛/𝑀.

By construction proportions are confined to the unit interval [0, 1]. As with any quantity
taking values in [0, 1] we can represent proportions equally well with decimals, for example
𝑝𝑛 = 0.2, and percentages, 𝑝𝑛 = 20%.

In other words a proportional measure defines the function (Figure 11)

𝜋 ∶ 𝑋 → [0, 1]
𝑥𝑛 ↦ 𝑝𝑛 = 𝜋(𝑥𝑛)

with
0 ≤ 𝑝𝑛 ≤ 1

and
𝑁

∑
𝑛=1

𝑝𝑛 = 1.

A collection of variables {𝑝1, … , 𝑝𝑁} satisfying these properties is referred to as a simplex.

More importantly a proportional measure 𝜋 is also known as a probability distribution
with the proportional allocations 𝑝𝑛 denoted probabilities. While the term “probability” is
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Figure 10: Every finite measure can be characterized by a proportional allocation.
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Figure 11: A proportional allocation is also known as a probability distribution.
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often encumbered with all kinds of interpretational and philosophical baggage its mathematical
structure is really quite straightforward: on a finite set a probability is just the proportion of
some finite quantity that is allocated to an individual element!

Philosophical tension arises only when we try to assign some meaning to these proportional
allocations. This isn’t a question of mathematics but rather applying mathematics to model
a system of interest. We’ll come back to the many different systems that can be consistently
modeled with probability theory, and hence the many different interpretations of probability
itself, in Chapter 4.

While we’re on the topic of terminological issues the word “distribution” is not without its
own problems. In mathematics the term “distribution” is heavily overloaded and can be used
to refer to a variety of related but formally distinct concepts. One way to avoid confusion is
to always refer to proportional measures as “probability distributions” and never just “distri-
butions” alone.

3 Measure and Probability Over Subsets

On finite sets any allocation, absolute or proportional, over the individual elements 𝑥 ∈ 𝑋
also defines an allocation over entire subsets x ∈ 2𝑋. The measure allocated to a subset is just
the sum of the measures allocated to the elements in that subset. For example the measure
allocated to x = {□, ♣, ♡} is 𝑚□ + 𝑚♣ + 𝑚♡ (Figure 12).

x1

x2

x3
x4

x5

m�

m♣

m♦
m♥

m♠

x = {�,♦,♥}
µ(x) = m� +m♦ +m♥

Figure 12: On a finite set an allocation over individual elements also defines an allocation over
any subset.
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In other words a measure over individual elements 𝜇 ∶ 𝑋 → [0, ∞] implicitly defines a measure
over subsets 𝜇 ∶ 2𝑋 → [0, ∞]. Similarly a probability distribution over individual elements
𝜋 ∶ 𝑋 → [0, 1] implicitly defines a probability distribution over subsets 𝜋 ∶ 2𝑋 → [0, 1].
Note that we have made the cardinal sin of overloading our notation so that 𝜇 refers to both
types of measures, and the only way to differentiate them is through their different inputs;
𝜇(𝑥) denotes the element-wise measure allocated to 𝑥 ∈ 𝑋 and 𝜇(x) denotes the subset-wise
measure allocated to x ∈ 2𝑋. Maintaining different typographical conventions for elements
and subsets is critical to avoid any confusion when overloading notation like this.

By construction any subset measure and probability distribution satisfy a wealth of useful
properties. For example for any measure

𝜇(∅) = 0

and

𝜇(𝑋) =
𝑁

∑
𝑛=1

𝜇(𝑥𝑛) = 𝑀,

while for any probability distribution we have 𝜋(∅) = 0 and 𝜋(𝑋) = 1.

Even better the subset allocations play well with the subset operations. Consider for example
the two disjoint subsets x1 = {□, ♢} and x2 = {♣, ♠}. Because the two subsets are disjoint
their union simply combines all of their elements,

x1 ∪ x2 = {□, ♢} ∪ {♣, ♠} = {□, ♣, ♢, ♠},

and the measure of that union is just the sum of the measures of the input subsets,

𝜇(x1 ∪ x2) = 𝜇({□, ♣, ♢, ♠})
= 𝑚□ + 𝑚♣ + 𝑚♢ + 𝑚♠
= (𝑚□ + 𝑚♢) + (𝑚♣ + 𝑚♠)
= 𝜇(x1) + 𝜇(x2).

More generally for any collection of subsets

x1, … , x𝐾

that are mutually disjoint,
x𝑘 ∩ x𝑘′ = ∅

for 𝑘 ≠ 𝑘′, we have

𝜇(∪𝐾
𝑘=1x𝑘) =

𝐾
∑
𝑘=1

𝜇(x𝑘).
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In words if we can decompose a subset into a disjoint collection of smaller subsets then we
can also decompose the measure allocated to that initial subset into measures allocated to the
component subsets. This consistency property is known as additivity.

A subset x and its complement x𝑐 are always disjoint, x ∩ x𝑐 = ∅. At the same time their union
covers the entire set, x ∪ x𝑐 = 𝑋. Consequently additivity implies that

𝑀 = 𝜇(𝑋)
= 𝜇(x ∪ x𝑐)
= 𝜇(x) + 𝜇(x𝑐),

or
𝜇(x𝑐) = 𝑀 − 𝜇(x).

In words the measure allocated to the complement of a subset is the total measure less the
measure allocated to that subset. For probability distributions this becomes even cleaner,

𝜋(x𝑐) = 1 − 𝜋(x).

When two subsets overlap we have to take into consideration that the sum of their measures
𝜇(x1)+𝜇(x2) double counts the allocations to any elements shared between them. For example
if x1 = {□, ♡} and x2 = {□, ♠} then the union includes the overlapping element □ only once,

x1 ∪ x2 = {□, ♡} ∪ {□, ♠} = {□, ♡, ♠}.

Consequently

𝜇(x1 ∪ x2) = 𝜇({□, ♡, ♠})
= 𝑚□ + 𝑚♡ + 𝑚♠.

Adding the measures allocated to the two subsets individually, however, gives

𝜇(x1) + 𝜇(x2) = (𝑚□ + 𝑚♡) + (𝑚□ + 𝑚♠)
= 𝑚□ + 𝑚□ + 𝑚♡ + 𝑚♠
= 𝑚□ + 𝜇(x1 ∪ x2).

The element that is double counted here, however, is exactly the lone element in the intersection
of the two subsets (Figure 13),

𝑚□ = 𝜇({□}) = 𝜇(x1 ∩ x2).

In other words we can write

𝜇(x1) + 𝜇(x2) = 𝜇(x1 ∩ x2) + 𝜇(x1 ∪ x2).
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x1

x2

x3
x4

x5

m�

m♣

m♦
m♥

m♠

µ(x1) = m� +m♥

µ(x2) = m� +m♠

µ(x1 ∪ x2) = m� +m♥ +m♠

µ(x1 ∩ x2) = m�

Figure 13: When two subsets overlap the measure allocated to each double counts the measure
allocated to any overlapping elements, here □, but the measure allocated to their
union does not. This results in an important relationship between the measures
allocated to the two subsets, the measure allocated to their union, and the measure
allocated to their intersection.

This relationship is quite general and holds for any two subsets regardless of their overlap.

These subset properties allow us to build up a given measure in many different ways, each of
which can useful in different circumstances. This provides convenient flexibility when trying
to apply measure theory and probability theory in practice.

For example we can always specify a measure globally by specifying the individual allocations
at the same time (Figure 14). Alternatively we can specify the allocation locally by allocating
measure to each element one at a time (Figure 15).

µ({♠})

µ({♥})

µ({♦})

µ({♣})

µ({�})

µ(X)

Figure 14: Measures can be constructed by specifying the individual element allocations all at
once.
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µ({�})

µ({♣})

µ({�})

µ({♦})

µ({♣})

µ({�})

µ({♠})

µ({♥})

µ({♦})

µ({♣})

µ({�})

µ(X)

µ({♣,♦,♥,♠})
µ({♦,♥,♠})

µ({♥,♠})

Figure 15: At the same time measures can be constructed by specifying the individual element
allocations one by one.

Critically we do not always need to start with individual allocations. Instead we can always
start by allocating the total measure to disjoint subsets and then iteratively refining that
allocation to smaller and smaller subsets until we reach the individual elements (Figure 16).

µ(X)

µ({�,♣,♦})

µ({♥,♠})

µ({�,♣})

µ({♦})

µ({♥})

µ({♠})

µ({�})

µ({♣})

µ({♦})

µ({♥})

µ({♠})

Figure 16: Measures can also be constructed by allocating the total measure to disjoint subsets
and then iteratively refining that allocation to smaller and smaller subsets.

In addition to providing flexible constructions the subset definition of a measure 𝜇 ∶ 2𝑋 →
[0, ∞] is also critical for generalizing measure theory beyond finite sets. Specifically it becomes
necessary when trying to consistently define measures on more mathematically complicated
sets like the real line. This will be the topic of Chapter 4.
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License

A repository containing all of the files used to generate this chapter is available on GitHub.

The text and figures in this chapter are copyrighted by Michael Betancourt and licensed under
the CC BY-NC 4.0 license:

https://creativecommons.org/licenses/by-nc/4.0/
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