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Common experience tells us that unsupported objects fall towards the ground under the in-
fluence of Earth’s gravity. To understand this phenomenon more quantitatively we need to
compare observations of falling objects to mathematical models, each capturing a distinct story
of how objects fall. In particular we might carefully observe the trajectory that a ball traces
out after it is released and then compare those observations to different mathematical models
for that motion given the ball’s initial height and velocity and the local acceleration due to
gravity.

If the measurements were infinitely precise (Figure 1a) then we would be able to exclude any
model that doesn’t exactly reproduce the observed trajectory (Figure 1b).

Unfortunately even the most skilled scientist cannot achieve infinitely precise measurements.
Practical measurements of a falling object are limited not only by chaotic atmospheric forces
imparted on the ball as it falls but also finite spatial resolution. Even if we knew the true model
we still would not be able to exactly predict the outcome of each measurement (Figure 2).

Without precise predictability we cannot exclude most models outright; just about every model
will perfectly reproduce a given observation with a sufficiently convenient fluctuation in the
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Figure 1: In an ideal world (a) infinitely precise observations of a falling ball (b) would ex-
clude all mathematical models of gravity except for those that exactly reproduce the
observations.
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Figure 2: Realistic measurements are unpredictable, at best scattering around the true model.
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measurement. Even if we can restrict consideration to typical fluctuations many different
gravitational models will be consistent with the observed data (Figure 3).
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Figure 3: The lack of predictability in practical measurements complicates learning from data.
(a) Every model that is consistent with a noisy observation is accompanied by (b)
many other models that are similarly consistent.

In other words any inferences we can draw from a realistic observation will be fundamentally
uncertain. If we want to extract robust insights from data we have to face this uncertainty.

Consider, for example, learning about the environment around us through experiment and ob-
servation, either for pure curiosity or to inform particular decisions about how to interact with
that environment. The scientific method organizes this learning process into a systematic
procedure (Figure 4).

While the basic steps of this procedure might appear straightforward, the complexity of sci-
entific inquiry is hidden in the details of their implementation. In particular when trying to
implement the “Analyze Data” step we have to confront the fundamental limitations in mea-
surements and determine how to quantify our inferential uncertainty. Formally quantifying
inferential uncertainty is exactly the goal of statistical inference.

To realize the “Analyze Data” step, and hence the scientific method as a whole, we have to
encode our knowledge into mathematical models, identify how consistent those models are
with a given observation, and then verify that the consistent models adequately reproduce the
structure of that observation (Figure 5). As George Box noted we cannot do rigorous science
without rigorous statistical modeling and inference (Box 1976).

In this book we will learn how to use Bayesian inference to analyze data and, ultimately,
implement the scientific method for both scientific and industrial applications. Bayesian infer-
ence uses probability theory to not only develop probabilistic models of measurements
but also to quantify how consistent those models are with our domain expertise and observed
data (Figure 6)
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Figure 4: The scientific method reduces the process of learning from experiment and observa-
tion into a sequence of basic steps, including one where we have to draw inferences
from observed data.

Although Bayesian inference is conceptually elegant its practical implementation is far from
trivial. In order to implement a successful Bayesian analysis we need to be proficient with
not only building models but also critiquing their adequacy in a particular application and
accurately quantify their consistency with observed data. This books considers not only the
conceptual foundations of Bayesian inference but also these implementation challenges so that
by its conclusion you will be prepared to build the bespoke analysis unique to your particular
application.

1 The Pedagogical Approach Of This Book

To execute such an ambitious goal as painlessly as possible we need a careful pedagogical
strategy. What is the best way to learn how to robustly implement Bayesian analyses?

In this section I’ll discuss what I think is the best way to learn Bayesian inference and hence why
this book is structured so differently from many other introductions to Bayesian analysis.
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Figure 5: Each step in the scientific method encapsulates many critical implementation details.
For example in order to “Analyze Data” we need to be able to develop candidate
mathematical models, each representing one way that observations could be gener-
ated, and then quantifying how consistent each of those models are with an actual
observation.
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Figure 6: Bayesian inference uses probability theory to quantify which models (a) how a priori
consistent models are with any available domain expertise and then (b) how a poste-
riori consistent they are with both the available domain expertise and any observed
data.
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1.1 Abstractions

Most subjects, including Bayesian inference are conceptually dense. While they might super-
ficially appear simple the more closely we examine them the more detail we need to confront
in order to form a coherent theory. In order to make a subject approachable for students we
have to rely on pedagogical abstractions that hide the overwhelming depth behind only a
selection of concepts that are easier to digest.

A good abstraction focuses on simple concepts that are mostly consistent with each other.
This consistency keeps the abstraction largely self-contained, obscures the hidden depth below.
Scrutinizing the inconsistencies that do manifest in a given abstraction, however, will eventually
lead us beyond the boundaries of that abstraction and into the domain of a new, deeper
abstraction. When developing practical methodologies we need to find a sufficiently rich
abstraction that captures all of the necessary concepts without too much unnecessary detail.

Consider, for example, the real numbers. At a high-level we can conceptualize the real numbers
as a continuum with infinite detail no matter how closely we zoom in. This is a completely
reasonable abstraction for most applications involving not only basic arithmetic but also more
complicated operations like differentiation and integration. When we want to engage in more
technical results, however, we will need to go beyond this simple abstraction in order to develop
a consistent theory free of pathological behavior.

Abstractions also play a role in how real numbers are implemented in practice. At a high-
level we can assume that computers are able to exactly represent real numbers and exactly
implement their arithmetic operations. In many applications this abstraction is entirely valid.
When working on applications that require precise or complicated calculations, however, we
start to see cracks in this conceptual picture.

Eventually we have to confront the reality of the finite precision arithmetic implemented on
computers and how it deviates from exact arithmetic. Going slightly deeper we might consider
the limited dynamic range of floating point numbers that can result in underflow and overflow
for particularly small and large results. Digging even further we might tackle how underflow
and overflow in intermediate calculations can lead to catastrophic errors even if the final result
is not itself extremely small or large.

1.2 Sequences of Abstractions

In most applications an abstraction that is sufficiently detailed is too overwhelming to approach
all at once. Instead we have to progress towards it carefully through a sequence of intermediate
abstractions. This leaves us to consider the progressions that best guide students towards that
terminal abstraction.
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1.2.1 Non-Overlapping Progressions

One approach, for example, utilizes a progression of non-overlapping abstractions (Figure 7).
This allows the intermediate abstractions to incorporate compelling intuitions and examples
even if they don’t generalize to the final abstraction. Moreover each abstraction can be com-
partmentalized into a relatively self-contained course, and different students with different
goals can follow the progression to different terminal abstractions. For these reasons this
approach is particularly common in academia.
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Figure 7: Non-overlapping progressions build up to a final, sufficient abstraction through in-
consistent intermediate abstractions. At each iteration only some of the concepts
are carried forward to the new, more detailed abstraction.

Non-overlapping progressions can be problematic, however, when the sequence of intermedi-
ate abstractions terminates prematurely. The insights of the last intermediate abstraction
encountered might be useful in some circumstances, but without the context of the remain-
ing abstractions a student will likely have difficulty identifying exactly what those necessary
circumstances, let alone validating when they hold in a given application. In other words the
understanding offered by only an intermediate abstraction can be fragile when the assumptions
holding that abstraction together cannot be taken for granted.

Another problem with this approach is that the updating from one abstraction to the next
can be burdensome on students. Because the abstractions don’t overlap a student doesn’t
just expand their understanding with new concepts at each iteration; instead they also have
to unlearn the concepts that don’t generalize from the previous abstraction (Figure 8). This
repeated cycle of learning and unlearning can be frustrating and even discourage students from
moving past an intermediate, and potentially fragile, abstraction.

For example a non-overlapping approach towards teaching arithmetic on computers might start
by assuming that computers implement arithmetic exactly. In this case the initial abstraction
can demonstrate implementation with simple programs that define real variables and evaluate
arithmetic operations with negligible error. Students can then use these initial insights to write
new programs that can yield reasonable results in many cases but might exhibit large, often
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Figure 8: The (a) inconsistent abstractions in a non-overlapping progression can frustrate learn-
ing. At each iteration (b) only some concepts will generalize and transfer from one
abstraction to the next and (c) the newer abstraction will also introduce new con-
cepts that have to be learned. (d) Some concepts in the initial abstraction, however,
will not generalize. Students have to actively unlearn these concepts in order to fully
grasp the newer abstraction.
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ignored errors in others. A following abstraction might introduce programs that explicitly
demonstrate errors before introducing the practical reasons why real numbers and their basic
operations can’t be exactly implemented on computers with finite resources. The progres-
sion could then continue to abstractions that introduce the basic structure of fixed-point and
floating-point arithmetic and their pitfalls before presenting the technical details of fixed-point
and floating-point arithmetic implementations on contemporary computers.

1.2.2 Overlapping Progressions

Alternatively we can build up to that final, sufficient abstraction with a progression of overlap-
ping abstractions (Figure 9). By avoiding concepts that don’t persist to the final abstraction
entirely nothing has to be unlearned, and students can instead focus on expanding their un-
derstanding to the new concepts introduced at each iteration.

Current
Abstraction

Sufficient Abstraction

(a)

Current
Abstraction

Sufficient Abstraction

(b)

Current
Abstraction

Sufficient Abstraction

(c)

Figure 9: Overlapping progressions build up to a final, sufficient abstraction through consistent
intermediate abstractions. At each iteration all of the concepts are carried forward to
the new, more detailed abstraction avoiding any need to unlearn deprecated concepts.

Unfortunately the concepts that don’t generalize often provide more explicit, compelling mo-
tivation than the concepts that do generalize. Because of this intermediate abstractions along
an overlapping progression can be difficult to relate to the ultimate objectives. At the same
time the persistent concepts alone, and hence the intermediate abstractions they shape, often
appear incomplete, at least until the progression approaches the final abstraction. Conse-
quently to benefit from a non-overlapping approach students have to be sufficiently dedicated
to persevere through the early, less concrete abstractions.

For example an overlapping approach to teaching computer arithmetic might start not with
any demonstrative code but rather a discussion of the infinite memory it would take to store
an arbitrary real number, the infinite processing power it would take to evaluate arithmetic
for arbitrary real numbers. A subsequent abstraction might consider the various ways that
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we can theoretically approximate real numbers and their operations with only finite memory
and finite processing power. Without explicit implementations, and code demonstrating those
implementations, there is nothing that students can abuse but also nothing with which students
can experiment and build their comprehension. Only in later abstractions where we see how
finite-precision arithmetic is implemented will we be able to construct interactive examples.

1.3 Why This Book Is So Long

I think that it’s fair to say that most pedagogical resources take a non-overlapping approach
to teaching statistics in general, let alone Bayesian inference in particular. In order to reach
demonstrative examples as soon as possible these resources typically begin with simple models
and little if any critique of the assumptions implied by those models. At the same time the
construction of inferences from these models is often delegated to tools whose accuracy is taken
for granted. Few resources move beyond these relatively shallow abstractions leaving students
unaware at how fragile some of the insights might be.

Many of these resources inspire enthusiasm for Bayesian inference which, and I mean this
sincerely, cannot be discounted. Enthusiasm alone, however, may not be enough for students
to avoid the consequences of fragile insights. Many students struggle to connect the simple
models of shallow abstractions to their own applications. Some identify the problematic con-
sequences of applying simple models when they’re not appropriate but, without a broader
context, mistakenly blame their own implementation of those models and not the models
themselves.

This book is for those students. I embrace an overlapping progression to deliberately, if slowly,
develop the probabilistic tools needed to build bespoke models appropriate to a particular
application and implement faithful Bayesian inference that accurately quantifies uncertainty
for those models. Our goal is artisanal models, not something mass produced and sold at big
box stores.

Depending on your previous experience with probabilistic modeling and Bayesian inference you
may find useful insights by jumping straight into later chapters. That said this book is designed
to be read from beginning to end as concepts, terminology, and mathematical notation are
all built up progressively from the beginning. Starting from the beginning will also help you
confront and unlearn any misconceptions about probability, modeling, and inference that you
may have picked up along your journey.

I do not assume any prior knowledge of the theory or practical implementation of probability
theory, probabilistic modeling, or Bayesian inference, but I do assume some basic mathematical
experience. In particular the book will require a conceptual understanding of calculus, namely
the basic theory and implementation of differentiation and integration, as well as working
knowledge of linear algebra.
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Most introductory calculus textbooks, such as Larson, Hostetler, and Edwards (2005) and
Stewart (2015), will cover the relevant concepts. More sophisticated treatments like Apostol
(1967) and Apostol (1969) aren’t necessary but can be helpful references when looking into
some more subtle technical details. For linear algebra Trefethen and Bau (1997) is particularly
thorough about not just the basic of linear algebra but also the common pitfalls of its practical
implementation.

Later chapters introduce code demonstrations in R and Python. If you are comfortable with
either language then I encourage you to not just look through the code but also run it yourself.
Playing around with these code demonstrations is a powerful way to develop and reinforce
your comprehension.

The Carpentries offer a variety of workshops that introduce both R and Python. Jenny Bryant’s
Stat545 course material is another great resource for introducing oneself to R and Sweigart
(2019) is a nice resource for learning Python.

2 Outline

With all of that said let’s look at the pedagogical progression of this book in a bit more detail.
The book it organized into three parts: the first focuses on applied probability theory, the
second on the general principles of probabilistic modeling and statistical inference, and the
third on particular modeling techniques.

In Part I we will learn the mathematical properties of probability distributions, the opera-
tions that we can use to manipulate probability distributions, and some of the most useful
methods for approximately implementing those operations in practice. The first few chapters
will necessarily be a bit abstract until we can properly set up those implementations but your
patience will be rewarded. Overall these chapter will go into much more detail about prob-
ability theory than most introductions to Bayesian inference, although that that detail will
focus on conceptual understanding and practical insights rather than technical formalities and
proofs.

A thorough understanding of applied probability theory sets the stage for Part II where we will
use probability distributions to quantify unpredictable measurements in theory, approximately
model the processes which give rise to measurements in practice, and quantify our uncertainty
about how consistent various approximations are with the outcome of a specific measurement.
In particular we will focus on techniques to translate our understanding of a system and mea-
surements that interrogate that system into bespoke probabilistic models capable to gleaming
precise insights from data.

With that conceptual foundation established Part III considers particular modeling techniques
that can be useful as modular building blocks for developing these bespoke models. Each
chapter focuses on not only the assumptions inherent to a given technique and how to validate
those assumptions but also on efficient implementations. Many of the chapters will consider
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popular estimation techniques from the modeling perspective we need to rigorously integrate
them into Bayesian analyses.

Although Part III introduces many modeling techniques it is by no means exhaustive. One of
the exciting aspects of probabilistic modeling is an eternal opportunity to learn new techniques,
expanding our modeling toolkit and the sophistication of bespoke models that we can employ
in practice. This book will hopefully prepare you for that never-ending, but never-boring
journey.
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