Hidden Markov Models

Michael Betancourt

June 2025

Table of contents

1 Joint Mixture Observational Models

2 The Marginal Hidden Markov Model
2.1 Looking For A Pattern
2.2 Verifying The Pattern L
2.3 The Forward Algorithm L o
2.4 Alternative Conventions

3 Inferring Latent State Behavior
3.1 Marginal Posterior Probabilities For Individual Latent States
3.2 Sampling Hidden States

4 Robust Implementations of Hidden Markov Models

5 Hidden Markov Modeling Techniques
5.1 Modeling The Initial Stateo oo
5.2 Modeling Multiple Latent Sequences
5.3 Modeling Partially Observed Latent States

6 Degeneracies of Hidden Markov Models

7 Demonstrations

7.1 Setup

7.2 Comparing and Contrasting Implementations

7.2.1
7.2.2
7.2.3
724
7.2.5

Simulate Data L o
Exploratory Data Analysis
Hidden Markov Model Log-Sum-Exp Implementation
Hidden Markov Model Dynamic Rescaling Implementation
Hidden Markov Model Built-In Implementation

NoRNG ¢ |

12
13
16

18

20
20
22
26

7.2.6 Implementation Consistency Check 50

7.2.7 Static/Dynamic Mixture Model Comparison 56

7.3 Modeling Unobserved Latent States 60
7.4 Hidden Markov Models In Practice 72
7.4.1 Exploratory Data Analysis 72

742 Model 1 e 76

7.4.3 Model 2 e 80

7.4.4 Inferential Comparisono 87

8 Conclusion 90
Appendix: State-Space Models 90
Acknowledgements 92
References 93
License 93
Original Computing Environment 93

In the mixture modeling chapter we first considered how to model data that could have arisen
from one of a number of component data generating processes. There we derived mixture
observational models under the assumption that the activation of a component data generating
process, and hence the behavior of the component assignment variables, is independent across
individual observations.

Mixture observational models have broad applicability in practice, but they are by no means
universal. In order to generalize this modeling technique we need to consider joint mixture
observational models that couple the component assignment variables together. These gener-
alizations, however, also introduce an immediate practical challenge: how, if at all, can be
efficiently marginalize the component assignment variables?

From this perspective hidden Markov models are an exceptional generalization to mixture
observational models. On one hand they allow for more sophisticated behavior by allowing
the contribution of a component data generating process to persist across multiple observations
before another data generating process takes over. On the other their mathematical structure
is just cooperative enough to allow for practical marginalization.

In this chapter I will introduce hidden Markov models, carefully derive the algorithms needed
for efficient marginalization, and demonstrate their robust implementation in Stan.

https://betanalpha.github.io/assets/chapters_html/mixture_modeling.html

1 Joint Mixture Observational Models

Consider I component observations,

y17 7yi7 "'7y17

each of which can arise from one of K component observational models,
p(y; 14,k,0) =p; x(y; | 0).

Note that in general the y,, and hence the precise form of the p(y; | i,k,60), do not have to
homogeneous. For example some y,; might be discrete while others are continuous. Moreover
the dimension of each y; might vary, with some observations featuring more sub-components
than others.

To quantify which component observational model is responsible for each component observa-
tion we introduce I categorical assignment variables,

z;€{1,...,K}.
These assignment variables are also known as states, as in the state of the overall data
generating process for each observation.

When the states z; are unknown, equivalently latent or even hidden, we need to need to
incorporate them into the observational model so that that we can infer their behavior. This
requires a joint model of the form (Figure 1)

—~

p(’zla"' y 2RI Y1y - aybe) =P Y1 | Rly e 3217‘9)]7(21""’2[| 0)])(9)

Pz, (Ui | O)p(215 s 21 | 0) p(0)

[t}

=~ 1

s
Il
—

P(?Jz‘ | i’zive)p(zla e 2p | 0)p(0).

To make the equations in this chapter a bit less overwhelming let’s take the opportunity to
introduce a more compact notation for sequences of observations and latent states,

Yiig = (yilvyi1+17 s Yin—1s Z/i2>

Ziig (Zz‘1>zz‘1+17---azirhf%)-
This allows us to write the general joint model as

I
p<21:17y1:179> = Hp<yz ’ iazhe)p(zlv sy 2T | 9)])(0)

i=1

Figure 1: In general the behavior of the latent assignment variables for each mixture observa-
tional model, or latent states, are all coupled together.

In the mixture modeling chapter we derived mixture observational models by assuming that
all of the latent states were independent and identically distributed (Figure 2),

I

p(zrr 1 6) =[] o= 16):

i=1

I will refer to this as a basic mixture observational model. With this assumption we were
able to marginalize out each discrete latent state individually. This, in turn, allowed us to use
high performance computational tools like Hamiltonian Monte Carlo.

Figure 2: Basic mixture observational models assume that the latent states are independent.

An arbitrary joint mixture observational model, however, features K! distinct configurations
of the latent states. Consequently direct summation of the latent states,

p(yr.g | 0) = Z"'ZP@LI:ZJM 10),
z1 Zr

is typically infeasible. There is a key exception, however, where the coupling between the
latent states allows for efficient marginalization while still being rich enough to be useful for
practical applications.

https://betanalpha.github.io/assets/chapters_html/mixture_modeling.html

To motivate this coupling let’s first assume that the latent states are ordered so that we have
a well-defined notion of neighboring states. For example the observations might be indexed
in the temporal order in which they were made, organized along a one-dimensional spatial
direction, and the like.

Next we will assume that each latent state is conditionally dependent on only its preceding

neighbor (Figure 3),
I

p(z1.1,] 0) = p(21) Hp(zz | 2i1,0)-

i=2
This particular dependency structure arises so often in both theoretical and applied probability
theory that it has been given its own adjective: Markovian.

Figure 3: In a Markov model for the latent states the behavior of each latent state depends on
only the behavior of its preceding neighbor.

Under this Markovian assumption the joint model becomes

p(21.1:Y1.150) = p(21.1,y1.1 | 0) p(O)

where

I
p(21.0, 1.1 1 0) = Hp(yi | 4,2, 0)p(21, ..., 21 | 0)
i=1

I I
= [Hp(yl | i,zi,G)] [p(,zl) Hp(zz | 2;1,0)
I
:p<Z1) (yl | 17'2139)]:[p(zz | Zifl,e)p(yi | i,Zi,H).

Because it assumes “Markovian” dependencies for a sequence of “hidden” states this model
is known as a hidden Markov model. That said is it not unreasonable to refer to it as a
Markov mixture observational model if we want to emphasize the assumed structure of
the observations as well as that of the latent states.

In the context of a hidden Markov model the conditional probabilities p(z; | z;_,0) are known
referred to as transition probabilities. A hidden Markov model with the same transition
probabilities between all pairs of states, so that

plz; =k | 2,1 =k, 0)

depends on only k& and k&’ but not 4, is known as a homogeneous hidden Markov model.
Heterogeneous, non-homogeneous, and general hidden Markov models are all terms used
for emphasizing varying transition probabilities.

2 The Marginal Hidden Markov Model

In theory the joint observational model p(zy.;, ;.7 | #) is sufficient to infer which latent states
z1,; and model configurations 6 are consistent with any observed data. The discreteness of the
latent states, however, frustrates practical implementation of those inferences.

Fortunately the Markovian structure of hidden Markov models allows us to efficiently marginal-
ize out the discrete latent states. That said actually deriving an explicit marginalization
algorithm from that structure is a pretty onerous task.

In this section I will motivate and then carefully derive the strategy for efficiently marginalizing
the discrete hidden states of a hidden Markov model. The derivation requires some pretty
brutal calculations and readers interested in only the final result can jump straight to Section
2.3 without missing anything.

2.1 Looking For A Pattern

First and foremost let’s motivate the basic approach to efficient marginalization by carefully
working out the direct summations for I =1, I = 2, and then I = 3 and then looking for any
useful patterns.

When I =1 we have
(21,91 10) =p(2) p(yy | 1,21, 0).

Summing over the initial latent state gives

p(y1 1 0) = ZPZL%W
= Zp yl | 1721>)p<21>

Note the similarity to the marginal form of a basic mixture observational model,

ply | 0) = Zpy\29 2).

For I = 2 we have

p(Zl’Z27y17y2 | 0) :p(’zl)p(yl | 172150)1)(22 | 2170)p<y2 ‘ 272279)’

or, equivalently,

(21, 20,91, Y2 | 0) = P21, 91 | 0) p(29 | 21,0) p(ya | 2, 25, 0).

Summing over the initial latent state gives

p(z27y17y2 ‘ 9 Zp 21,225 Y15 Y2 | 0)
= ZP 21,91 | 0) p(20 | 21,0) p(ys | 2, 25, 0)

:P(?J2 | 2,25,0 ZP(Zl,yl | 0) (22 | 21,0).

21

We can then marginalize out both of the latent states by summing this result over z,,

p(y1, 92 | 0) = Zp<32ay171/2 1 0)

= S0l | 2.5.0)| vt 1606 1.0

= Zp<y2 ‘ 272279>p(z2 ‘ y179>'

Interestingly this once again this has the same form as a basic mixture observational model.
Now, however, the component probabilities are informed by the previous observation,

p(23 | Yy, 0 ZP 21,91 | 0) p(22 | 21, 0).
Finally let’s consider I = 3 where the joint model is given by
3
P(21.3, Y13 | 0) = p(21) p(Y1 | 1,21, 0) Hp(zi | 21, 0) p(y; | 4, 2;,0)
i=2

3
_p<217y1 ’ 9) Hp<zz ‘ Zi—1s) (yz | Za [)
=2

Here summing over the initial latent state gives

P(22:3,y13 | 0) = ZP(Zl:3aZ/1:3 10)

3

=Y plzru 10 [[pGzi | 200, 0) p(y; | 4,24, 0)
2z =2

— [plos 1350005 | 220
[P(Y2 |2, 25,0 ZP 21,01 | 0) p(z | Z1a9)}

The second term might look familiar; it’s exactly p(zy, Y1, Yy |) which we just derived for the
I = 2 case! Consequently we can write

P(2a5s 90 | 6) = [p<y3 13,245,0) p(| zm}
-[p Yz |2, 25,0) ZP 21,01 [O)p 22‘2179)]

— (ot 13,0000 | 220
: [p(zwypyg | 9)}
(

=Pp\Ys3 ‘ 372379)p(22>y1»@/2 | 9)29(23 | 29,0).

Now we can sum over z, to give
p(23,91:3 | 0) = Zp(z2:37y1:3 | 0)
—ZP Ys | 3,23,0) p(22, 91, ¥2 | 0) p(23 | 25, 0)

zp(yg | 3,23,0) Zp 29591, Y2 | 0) P25 | 22, 6).
22

Notice how we derive p(z3,y1.5 |) from p(zy,y1,ys | 6) in ezactly the same way that we
derived p(2y,y1,Yy, | 0) from p(zy, 4, | 0).

Lastly we sum over z3 to give the full marginal probability density function,

p(y1s]0) = sz3a?/13|9

= Eplon 18,200 [szg,yl,yzrm (23 | 22,6)

= Zp Ys | 3, 23,0) p(z3 | Y10, 0)-

The final marginal model continues to mirror a basic mixture observational model, in this case
with derived component probabilities

p(z3 | Y1.0,0) = Zp<227y17y2 | 0) p(23 | 25, 0).

Let’s summarize what we have seen in these first few cases.

Instead of deriving p(y;.5 | €) by summing p(z;.5,9;.5 | @) over z;, z,, and z5 at the same time,
we can evaluate it by emulating a basic mixture observational model and summing p(z3,y;.5 | €)
over just zs.

Conveniently p(z3,y;.5 | #) can be derived directly from p(zy,y;.5 | #), and that term can be
derived from p(z;,y; |) which in turn can be derived from the initial state probabilities

p(z1),

p(z1,y1 |0) =p(ys | 1,21,6) p(21),
P(22,Y1:2 | 0) = p(ya | 2,25, 0 ZP (21,91 [0) P23 | 21, 6),

p(23,915 | 0) = plys | 3, 23,0 ZP 29, 1o | 0) P23 | 22, 0).

At this point the important question is whether or not this recursive pattern over the first
three cases holds more generally, with

p(2; [y1.4,0) = p(y; | 4, 25 [ZP(%MZ/L(@'D 10)p(z; | 2;-1,0)
Zi-1

for any 1 < ¢ < I. If it does then starting with the initial state probabilities p(z;) we can
iteratively compute p(z; | yq.; | @) and then sum over z; to give the marginal model p(y,.; | 0).

2.2 Verifying The Pattern

While not exactly straightforward, with enough mathematical effort we can derive a general
relationship between p(z;,yy.; | 0) and p(2;_1,yy1.;_1) | #) using conditional probability theory
and the conditional structure of the joint hidden Markov model. The exact properties we need
are pretty onerous to work out, and I will not attempt to do so in this chapter. Instead I will
shamelessly defer to Bishop (2006) which reviews the necessary properties and strategies for
deriving them.

Ultimately we want to reduce p(z;,v;,; | #) to an object that depends on only the first i — 1
latent states and observations. To that end let’s peel off the terms that depend z; and y;,

Pz Y1.4 1 0) = p(ziayiaylz(ifl) | 6)

(ylz(z;l) | 29, 0) p(2;,9; | 0)
(yl:(i—l) ‘ Zi’yive) p(yz ’ iazha)p(zi | 9>

p
p

Because of the Markovian structure of the hidden Markov model the first term can be written
as

P(Z/l:(zq) | 2;,9;,0) = p(ywq) | 2;,0)

Consequently we have

(24,914 | 0) = p(yl:(i—l) | 23, 9:,0) p(y; | 4, 2;,0) p(2; | 0)
= P(?/1:(i—1) | 2;,0) p(y; | 1, 2;,0) p(2; | 0)

=p(y; | i,2;,0) [p(ylz(il) | 4,2;,0)p(z; | 0)

=p(y; | i73i79)p(2z”?/1:(i—1) | 6).

The second term here is a bit awkward, but it can be simplified by writing it as a marginal
probability density function,

p<ziaylz(i—1) | 0) = ZP(Zi—thyL(i—l) | 6)

= ZP(3i7y1:(i—1) | 2i21,0) p(2;_1 | 0).

We can further simplify the first term in the sum to

p<Zzay1:(i71) | 2;21,0) = p(2; | Zifhe)p(yl:(ifl) | 21, 0);

intuitively conditioning on z; ; blocks any coupling between the following latent state z; and
the previous observations yy,;_1).

10

This allows us to write

p(zivyl:(i—l) | 0) = Zp(zi)ylz(i—l) | 2i-1,0) p(2;_1 |)

= ZP(’% | Zi—lae)p<y1:(i—1) | 2i21,0) p(2;_1 | 0)

= Zp(zi | 21, 0) [p(yl:(i—l) | 2i1,0) (2,1 | 0)

= ZP(%’ ‘ Zi—lae)p<zi—17y1:(i—1) 10).

Substituting this back into the original equation for p(z;,y,.; |) finally gives

p(2i, 914 1 0) = p(y; | iazive)p(ziayl:(ifl) | 6)
=p(y; | 1,2;,0) ZP(%’ ‘ Zifbe)p(ziflayl:(ifl) | 0),

Zi-1

which is exactly the recursion equation that generalizes the pattern we found in the Section
2.1.

2.3 The Forward Algorithm

Implementing this recursive calculation given observations
gl) 7?77;7 7:&[
is made a bit more straightforward with the introduction of some more compact notation.

First let’s denote the initial state probabilities, observational model outputs, and transition
probabilities as

pr = plzg = k)
wi,k = p(ﬂz | ivzi = ka 0)
Fi,k’k =plz;=k|z_1=Fk,0)

Then we can define
G = p(z; =k, 1. | 0)

with the recursion becoming

K
Q= p(y; | i,2, =k) Z p(z; =k |z =F) Qi_1,k
K=1

K
:wi,kE Lk @i g
K'=1

11

Conveniently we can also write this as a matrix equation,
T
Qy = Ww; o (Fi '0%—1))

where o denotes the Hadamard or element-wise, product. Alternatively we can use only matrix-
vector products,

o; = diag(w;) - (FzT) ai—l))

although we have to be careful to not actually evaluate diag(w;) as a dense matrix and waste
precious computational resources.

In this matrix notation the evaluation of the marginal observational model is given by

Qg =p

(Y| 0) = 17 ag.

This procedure is also known as the forward algorithm as it iterates through the latent
states in sequential order.

The cost of each iteration of the forward algorithm is dominated by a matrix-vector product
which requires O(K?) operations. Consequently the cost of the entire forward algorithm scales
as O(I K?). For all but the smallest values of K and I this is drastically faster than the O(K7)
scaling that would be required of a brute force summation.

That said for sufficiently large K and/or I the cost of implementing the forward algorithm can
still be prohibitive. In particular increasing the dimension of the latent states increases cost
much faster than increasing the number of latent states.

2.4 Alternative Conventions

In the previous derivation of the forward algorithm I have made a few choices of notation that
are not universal, and hence might clash with other references.

For example many references like Bishop (2006) consider an initial latent state z, that is
not paired with a corresponding observation (Figure 4). One awkward consequence of this
convention is that there will be a different number of latent states and observations which can
be awkward to manage in practical implementations. Indexing is already hard enough!

The convention used in this chapter is more general in the sense that the alternative convention
can be recovered by setting
Wik =p | 1,2, =k,0)=1

12

Figure 4: One common convention for hidden Markov models assumes that the initial latent
state is not complemented with any observations.

for all k.

Another potential divergence in notation concerns the transition matrix I'. Some references
like Bishop (2006) define the elements of the transition matrix not as

Liwe=p(z =k | 21 =K',0)
but rather the transpose
Ui = p(z;=k|z_=Fk,0).

Neither convention has any substantial practical advantage over the other, we just have to
make sure that we’re using one convention consistently.

3 Inferring Latent State Behavior

After marginalization we can still recover inferences for the latent states with an application
of Bayes’ Theorem. Specifically the joint posterior density function for all of the latent states
is given, up to normalization, by partially evaluating the joint model,

(217 | 911, 0) X p(21.1, U115 0)-

When [is large, however, this joint posterior density function will be much too ungainly to
manipulate or communicate directly.

If we are interested in the behavior of the latent states then we will need to be able to isolate
meaningful, low-dimensional summaries of these inferences.

As in Section 2 we will make heavy use of some of the properties of the hidden Markov model
detailed in Bishop (2006). Moreover, readers interested in only the final results can safely
jump directly to the end of each section.

13

3.1 Marginal Posterior Probabilities For Individual Latent States

In some applications the marginal posterior probabilities for a single latent state,

p<zi | y1.1,0),

is useful. We can derive these marginal posterior probabilities with an application of Bayes’
Theorem,

(2 | y1.1,0) < p(yyr | 2, 0) p(2; | 0).

Fortunately deriving the terms on the right hand side of this equation is relatively straight-
forward if we take advantage of the structure of the joint model. For example the first term
simplifies to,

P(Wrr | 2:0) = p(yr | Zz‘ve)p(y(iﬂ):f | 2;,0).
In words conditioning on z; breaks any coupling between the proceeding observations and the
following observations.

Substituting this result gives
p(z; | Y1.1:0) < p(yr.s | 2;,0) p(2; | 0)
¢ p(Y1: | Zi70>p(y(i+1):l | 2;,0)p(z; | 0)
o< | p(Yr | 25 0) p(2; | 0) p(l/(z‘ﬂ):[| 2;,0)
o< p(245 Y1 | g)p(y(iJrl):I | 2;,0).
As we saw in Section 2, when we run the forward algorithm for a given observation we compute
p(2;, Yy, | 0) for each i. Consequently in order to compute the marginal posterior probabilities

for each latent state we just need to save these intermediate values and then compute p(g;41).7 |
z;,0).

Conveniently this term can be evaluated with a recursion of its own. To parallel the notation
of the forward algorithm let’s denote

ﬁi,zi = P(?j(iﬂ):l | 23, 0).

In order to compute a particular §; , we need to introduce the latent state z;,, and then
decompose,

Bi,zi = p@(iﬂ):[| 2;,0)
= Zp(g(iJrl):IinJrl | 2;,0)
Zit1
= Zp(ﬂ(iﬂ);[| 25 241, 0) P(2341 | 25, 0).-
Zi+1

14

Now the first term in each summand simplifies due to, you guessed it, the structure of the
joint model,

p<y(i+1):la | 235 241, 0) = p(?J(i—O—l):Ia | 211, 0).

Once we know z;; the following observations y;,1).; do not depend on any of the previous
latent states.

Substituting this simplification gives

/Bi,zi = Zp(g<i+l):17 ‘ Zi Zi+179>p(zi+l | Zis 0)

Zit1

= Zp(ﬂ(i+1)=17| 2i41,0) P(2i41 | 23, 0)
Zi+1

= Zp(?jiﬂ i+ 1,250, 0) Pyoyr | Zip1: 0) p(zin | 2, 0).
Zi+1

That middle term, however, is just the § for the subsequent latent state,

~

P(?/(Hz);[a | 241, 0) = /81'+1,z1-+1!
Consequently we have a backwards recursion formula for the g

1,20

ﬂzz = Zp(gi+1 i+ 17Zi+179)p(g(i+2):17‘ Zi11,0) P(2i41 | 25 0)

Zit1

= ZP@H i+ 1, 20,0) Biya 2y, P(2iga | 205 0)
Zi1

- Zwi+1:zi+1 ﬁi+1ﬂzi+1 FHl:Zivzz‘H’
Zi+1

which we can also write in matrix notation,
Bi =T (Wz‘+1 ° 5¢+1) =T (diag(wiﬂ) : /3¢+1)-

The only remaining issue is how to compute ;. and initialize the backwards recursion. At
the last step we have

pyr | z1-1,0) = Zp(ylazl | 27-1,0)
21

= ZP(Z/I | 21, 21-1,0) p(21 | 2721, 0).
21

Recall, however, that conditioning on z; blocks any coupling between z; ; and y;. Conse-
quently

Py | 21,21-14,0) =y | 1, 21,0)

15

and
pyr | 21-1,0) = ZP(?JI | 21, 21-1,0) p(21 | 21-1,0)

= ZP(?JI | 1,21,0) (21 | 21-1,0).

Comparing this to the backwards recursion formula

51—1,ZH = ZP@I | I, 27,0) 51,,2[1)@1 | 21-1,0)

21
we see that we will get consistent results if and only if we set
/BI,ZI =1

for all values of z;.

Putting everything together we can evaluate the marginal posterior probabilities for the con-
figuration of any latent state by first scanning forward through the latent states,

Qg =p

scanning backwards through the latent states,

B[Zl

Bi—l = Fi : (wi ° /BZ>7
and then finally multiplying and normalizing,

QK /Bi,k

p(zi:k|ﬂ1:[79): K .
k=1 Yk’ ﬁz‘,k'

This combined procedure is known as the forward-backward algorithm. Comparing opera-
tions we can see the the forward-backward algorithm exhibits the same computational scaling
as the forward algorithm alone. Once we’ve run the forward algorithm running the backward
algorithm through all of the latent states will only double the computational cost.

16

3.2 Sampling Hidden States

The main limitation of marginal posterior probabilities for individual latent states is that, by
construction, they project out any information about the couplings between different latent
states. In particular sampling latent state configurations from individual marginal posterior
probabilities will not in general give a realistic trajectory through the latent states. Without
realistic latent state trajectories we cannot properly simulate joint observations.

We can always construct more useful posterior summaries that are sensitive to multiple latent
states if we can generate exact samples from the joint latent state posterior distribution. In
practice this requires an ancestral sampling procedure where we sample one latent state at a
time given all of the previously sampled latent states.

Ancestral sampling then raises the question of the sequence in which we should sample the
latent states. For example we might naively consider trying to sample the latent states in
order,

Zy ~p(z1,1.1)

52 Np<22 ‘ 21, 91.19)

gi NP(% | 5#17371:179)-

The immediate issue with this approach, however, is that each latent state needs to be informed
by not just the proceeding observations but rather all of the observations. In particular we
won’t be able to generate proper posterior samples without first accumulating the needed
information from subsequent latent states.

This suggests that we’ll need to sweep through the latent states at least twice, once to aggre-
gating information from all of the observations and then a second time to sample latent states.
Inspired by the structure of the forward-backward algorithm let’s consider sweeping forward
first and then sampling latent states in reverse.

In order to sample posterior latent states in reverse we’ll need to construct the conditional
posterior distributions

(21 | 25910, 0) < (21, 2 | y1.1,0)
o p(Yrr | 221524, 0) P(2i1,2; | 0)
o p(Yrr | 22152, 0) (2 | 2;1,0) p(2;,_1 | 0).

We can simplify this by exploiting one last property of the joint model,

PWrr | i1, 2,0) = p(?h:(iq) | zi21,0) p(y; | 4, Zi7‘9>p<y(i+1):1 | 2;,0).

17

This allows us to write the reverse conditional posterior probabilities as
P(zii1 | 2 Y1, 0) < p(Yrr | 2215 24, 0)
p(z‘2117><i1’6)
X p(yl (i—1) ‘zz 1) (yz | i:'zive)
P(y (i+1):1 | 2;,0) p(2; | 2,-1,0) P(2;_1 | 0)

X p(?h:(iq) | 2i-1,0) p(2;_1 | 0)

p(; | 4,2,)p(y(i+l g1 2:0)p(2; | 24,0)
p(yl:(i—l)’zi—l | 0)p(y; | i,2;,0)
'p(y(iJrl):I | 2;,0) p(2; | 2;-1,0).

<

In terms of the forward-backward algorithm notation this becomes

p(zi—l ‘ Zi7g1:170> X p(ﬂl:(i—l)vzi—l | 9) (yz | 1,z 3)
'p(g(iJrl):I | 2;,0) p(2; | 2,1, 0)

X o, w

i—1,2; 1 M,z
’ Bi,zi Fz V2% 1)
or in matrix notation,
qz 1 X wz Z; Bi,zi (aifl 0’71'7,21.) ’
where Vi, is the z;th column of the transition matrix I';.

Critically the conditional posterior probabilities for a given observation,

p(%i1 | 25 G115 0)
are straightforward to compute once we’ve run the forward algorithm to completion and the

backwards algorithm backwards to the active latent state. After completing the forward algo-
rithm we can sample a final latent state,

I‘:Ozl

r
A=
Zkrk

Z; ~ categorical ().

At this point we start running the backwards algorithm, using each new 3, and the previously
calculated «; ; to sample a new latent state Z,_; given the previously sampled latent state

~

zZ.

79
r=w; . B, (%'71 ° ’Yi7zi)

r
A=
Zkrk

Z, 4 ~ categorical ().

18

Compared to evaluating «; ; and 3, the cost of multiplying and normalizing is negligible.
Consequently sampling joint latent states introduces very little additional cost once if we're
already running the forward-backward algorithm.

4 Robust Implementations of Hidden Markov Models

As elegant as the forward and forward-backward algorithms are they are unfortunately not
quite as straightforward to implement in practice as we might hope. The problem is that the
forward and backward recursions are multiplicative; each «; and 3, is given by the product of
many terms and consequently are prone to numerical underflow on computers.

One way to avoid numerical issues is to work on the log scale with the log-sum-exp function.
For example instead of computing

K
Qi = Wik E Ui e ciq p
k=1
we could compute

K
10g(0%,k) = log (%’,k Z Fi,k/k: ai—l,k/>

k'=1

K
= log (wi7k) + log <Z Fi,k/k ail,k/)

k'=1

K
= log (%k) + log (Z exp <log(ri,k/k> + 10%(%—1,1«)))

k=1
= log (wiyk)

+ log-sum-exp (log(L; 1) + log(a; 1 1),

log(T'; k) + 10g(04i1,K))

19

Similarly in the backwards pass we could compute

K
log(B;) = log (Z Witk Bic1,xr FHka’)

k'=1

K
= log (Z exp <10g(%‘+1,k/) +1og (B) + 10g<ri+1,kk/))>

k=1
= log—sum—exp<log(wi+1,1) =+ 10%(@41,1) + IOg(Fi+1,k1)7

ey

log(wi+1,K) + 10g<5¢+1,K) + log(Fi+1,kK))

While numerically stable, the log-sum-exp function is unfortunately expensive. Introducing
a log-sum-exp function at each iteration of the forward-backward algorithm can substantially
increase computational cost.

Another way that we can avoid numerical underflow is to repeatedly rescale the o; and 3, at
each iteration and then correct for the rescaling whenever we use them in a calculation.

Consider, for example, the scaled forward recursion formula

T ’
Qa.,; :wio (F 'ai—l)

1

v; = max(a;)

After i iterations the unscaled a; and scaled o, will be proportional to each other,

i
’
o; = H v | oy
i’=1

Consequently we can always recover o from the more numerically stable o/i.

That said the product
i
H Vs
i’=1

will itself be prone to numerical underflow. Fortunately we can avoid this by working on the

log scale,
Q; = exp (Z log(l/l-/)) o

/=1

20

Note that this requires evaluating only one logarithm function at each forward iteration
and a single exponential function after all I iterations, much less expensive than repeated
log-sum-exp evaluations.

Dynamic rescaling is also useful for ensuring numerical stability when computing each 3, in
the backward recursion. Here, however, we don’t even have to keep track of the running
normalization so long as we always normalize the marginal and conditional latent probabilities
at each iteration.

The log-sum-exp implementation of hidden Markov models is popular in many Stan tuto-
rials, but the dedicated hidden Markov model functions in the Stan modeling language are
implemented using dynamic rescaling, which was shown to be just as robust but substantially
more efficient. We will implement both approaches in Section 7.

5 Hidden Markov Modeling Techniques

The basic construction and implementation of hidden Markov models is more general than
they might first appear to be. With some care we can incorporate a diversity of interesting
structure into hidden Markov models.

5.1 Modeling The Initial State

When marginalizing out the latent states all of the latent state probabilities are derived except
for the probabilities of the initial latent state. These have to be modeled and inferred along
with the transition matrices and configuration of the component observational models.

In some applications we might use hidden Markov models to capture the dynamics of a system
evolving from an explicit initialization. Here we can use our domain expertise about that
initialization to directly inform an appropriate prior model for the initial state probabilities.
Absent any readily available domain expertise a uniform prior model over the simplex of
possible initial state probabilities is not unreasonable, especially as a starting default to be
improved upon as needed.

For some applications, however, we might be interested in modeling dynamics that have evolved
for so long that the initialization is at best ambiguous. In these applications we need the initial
state probabilities to model equilibrium behavior. To formally define equilibrium dynamics
we’ll need to take a little detour into linear algebra.

The elements of each transition matrix are defined by the individual transition probabilities
between each pair of latent states,

Fi,k’k = p(zi =k i1 = K',0).

21

In particular the elements of I'; are all bounded between zero and one,
O S F’L,k/k S].,

and the elements in each row sum to one,

K K
Zri,k’k = ZP(%’ =k|z_=Fk,0)=1
k=1 k=1

Matrices with these properties are more generally known as row stochastic matrices or
right stochastic matrices

These properties endow the transpose of stochastic matrices with particularly interesting eigen-
structure (Papoulis and Pillai (2002)). For example the magnitude of the eigenvalues of any
right stochastic matrix are always bounded by one, and at least one left eigenvector will satu-
rate this bound,

or equivalently
st v=1.-v=v.

Consequently the repeated application of the transpose of a fixed right stochastic matrix to
any vector u will always converge to one of those leading eigenvectors,

lim (ST)i ‘u=v.

1—00

If the elements of S™" are all non-zero for some finite m € N then the leading eigenvector, and
hence this limiting behavior, will be unique. Moreover the elements of this unique leading
eigenvector will be real-valued and positive so that they can normalized into probabilities.

All of this linear algebra implies that any latent dynamics modeled with a well-behaved, homo-
geneous transition probabilities will eventually converge to some stable, equilibrium behavior
regardless of the precise initial state. The equilibrium probabilities of the latent states are
completely determined up to normalization by the leading left eigenvector of the transition
matrix.

In practice we can model a system already in equilibrium by deriving the initial state probabili-
ties from the eigendecomposition of the transition matrix. If the configuration of the transition
matrix is uncertain then so to will be its eigendecomposition, and hence the derived initial
states.

Our ability to implement these calculations in practice, however, will depend on the available
linear algebraic tools. For example Stan currently implements eigendecompositions for only
general complex matrices and symmetric real-valued matrices, but not stochastic matrices. In
theory we can use a general eigensolver, but in practice identifying an eigenvector with ezactly

22

unit eigenvalue and removing any complex number artifacts is at best awkward for floating
point arithmetic.

Finally it’s worth emphasizing that equilibrium is a well-defined concept for only homogeneous
transition matrices. If the transition probabilities change between different pairs of neighboring
latent states then the realized dynamics will always depend on the behavior of the initial latent
states.

5.2 Modeling Multiple Latent Sequences

Some systems are best modeled not with a single sequence of latent states,

1_ (.1 1 1
25 = (21,0 s 2y ey 27)
2 _ (.2 2 2
22 = (21,0, 2 e s 25)5
with coupled dynamics
m 1 M
P2 | Ziq, - 200)-

In theory we could derive generalized forward and forward-backward algorithms for multiple
latent states. Alternatively we can combine multiple latent states together into a single joint
latent state and use the standard forward and forward-backward algorithms.

One systematic way to combine two finite latent states together requires some more linear
algebra, this time in the form of an operation known as a Kronecker product, matrix
direct product, or tensor product (Curtis (1993)). The tensor product maps M latent
states 2" into a single joint state consisting of all possible n-tuples of the component state
elements,

2z, =2} ®. @M =M_ sm

For example the tensor product of the two latent states
2l €(1,2,3)

and
22 € (1,2)

is given by the ordered pairs

2z =21 ®22 € (1,1),(1,2),(2,1),(2,2),(3,1),(3,2).

23

Figure 5: Hidden Markov models can accommodate multiple sequences of latent states. (a)
In general the latent states evolve together but in some applications they might (b)
evolve independently of each other.

24

When working with these joint states in practice it is often helpful to relabel them with
sequential integers,

In general if each component state features K, elements then then tensor product will fea-

M
I &

m=1

ture

total elements.

Implementing a hidden Markov model with respect to this joint latent state then requires
an expanded transition matrix. Sometimes it is more productive to interpret the transition
matrix with respect to the joint latent state,

Fi,k/k :p(’zz =k | Zi—1 = k,vg))

and sometimes it is more useful to reason about the transition matrix in terms of the component
latent states,

Fi7k/1"'k§\4kl'"kM

_ 1 M __ 1 _ 1/ M _ 1.0/
=plz; = kg, s 2" =k ‘ zi =K. 20 =Ky, 0).

When the two states evolve independently of each other,

we can write the joint transition matrix in terms of component transition matrices. More
formally if
lek’k =p(" =k |z =k,0)

then the joint transition matrix for the joint latent states is given by the tensor product

[,=I®.TY=gM "

25

For example consider two component latent states with only two elements each,
1
2 € (15 2)

and
22 € (1,2).

Their tensor product is given by four ordered pairs
2 = le 2 212 € (17 1)7 (17 2)7 <27 1)7 (27 2)7
which we can encode as

(1,1) = 1
(1,2) — 2
(2,1) -3
(2,2) — 4

)

If each of these component latent states evolves independently of each other with the transition
matrices

then we can write the joint transition matrix as
I, =0; I}

le,n r’ le,12 r’
le,m r’ F11,22 r’

1 2 1 2 1 2 1 2
Fi,ll Fi;ll Fi,ll Fi;12 Fi,12 Fi;ll Fi,12 Fi;12
1 2 1 2 1 2 1 2

i e TinnThee Tiolhar Thialhe
1 2 1 2 1 2 1 2
Dion 501 TiorTiae Tioolian Thooliae

1 2 1 2 1 2 1 2
Lo Fi;21 Fi,21 Fi;22 Fi,22 Fi;21 Fi,22 Fi;22

Note that the tensor product of vectors and matrices is not strictly commutative. Changing the
order of the components changes the organization of the ordered pairs which in turn permutes
the elements of the joint states and joint transition matrix. In practice this just means that
we have to be careful to organize everything consistently.

More generally we have to reason through all
o 2
m=1

26

of the possible couplings between the neighboring component states,

— 1 _ M _ I, M _ 1
=p(z; = ki, 2 =ky | zi =k, .., 20 =Ky, 0).

Any lack of conditional dependence, with the evolution of any component latent states de-
pending on only some but not all of the component latent states, makes this task much more
manageable.

5.3 Modeling Partially Observed Latent States

Unobserved latent states are not uncommon in hidden Markov models, especially when the
models span many latent states. How best to model partially observed latent states depends
on why the observations are incomplete.

For example if the probability that a particular latent state is unobserved is independent of
any of the other model configuration variables then we can model partial observations with
a straightforward marginalization. Formally if the ith latent state is unobserved then we can
model the remaining observations with

P(Z1;17?/1:(i—1),y(i+1):1 | 6)
= /dyip(zlzlvylzl | 6)

I
= /dyzp('Zl)p(yl | 172170) Hp(zi’ ‘ Zi’—he)p(yi’ ’ilazi’vg)

i'=2
= p(zl)p(yl | 17Z170)

i—1

) [H p(2r | zy—1,0) (Y | i/7zi’79)]
i'=1

(2| 2i-1,0) /dyz‘p(yi |4, 2;,0)

[
. H p(zy | 2y—1,0) p(y;]i/,zi/,ﬁ)]

i/ =i+1

= p('Zl)p(yl | 172176>

[i—1
. Hp(zi/ | zi_1,0) p(y,;/ | i’,zi/,ﬁ)]

/=1

(2| 2i-1,0)

M I
: H p(2i | 2y1,0) p(yyr |i/72¢/79)} .
Li’=i+1

27

Conveniently this is equivalent to setting the corresponding observational model evaluations
to one,
p(gz ‘ i,ZZ-,H) =1,

or equivalently the log observational model evaluations to zero,
log °p<37i ‘ i, 217‘9> =0,

for each z;. In particular we can account for any unobserved latent states without having
to modify the forward and forward-backward algorithms by simply replacing the component
observational model evaluations with ones wherever necessary.

If we are not interested in inferring the behavior of unobserved latent states then we can also
model the partially observed data by marginalizing out the unobserved latent states entirely.
For example we can model a gap of observations along the latent states

Zi’ ZZ+17 ey Zz+6

by removing them and then replacing the transition matrix I'; with the matrix product (Fig-

ure 6)
i+6+1

II T
After re-indexing the remaining latent states we can run the forward and forward-backward
algorithms using the collapsed transition matrix. Really the only downside to this approach
is that the collapsed hidden Markov model will be non-homogeneous even if the full hidden
Markov model is homogeneous.

Modeling more complicated mechanisms for unobserved latent states is, unsurprisingly, more
complicated. A general approach that can be useful in practice is to introduce a auxiliary
sequence of known, binary states

that indicates whether or not a latent state is complemented with any observations. For
example we might define w; = 0 when there are no observations at the ith state, and w; =1
when there are.

When w,; = 1 the component observational models behave as they would without any missing-
ness,

p(y; | i, 2z, w; = 0,0) = p(y; | 1, 2;,0)

and when w, = 0 they all return one,
p(y; | i, 2w, = 1,0) = 1.

Because the w; are known the implementation of the forward and forward-backward algorithms
proceed as before with these modified observational model outputs for each i.

28

FH»I Fi+2 . PH»S : 1—‘i+4 Pi+5

(b)

Figure 6: (a) Gaps of latent states without any observations can be (b) collapsed into a single
transition given by the product of the transitions between the observed states.

29

The mechanism for which latent states are observed and which are not is then encoded in the
structure of the transition probabilities for these auxiliary states. In general the transition
from any w, ; to any w,; can depend on not only ¢ and w,;_; but also 2z, ; as well as any other
model configuration variables,

Ql,j/jk‘ = p(wz — j/ | wi*l = j7 Z’L‘*l — k" 9)

Specifically the coupling of w; to z;_; and 6 allows our inferences to account for any selection
bias in partially observed data.

6 Degeneracies of Hidden Markov Models

As discussed in the mixture modeling chapter basic mixture observational models are vulner-
able to degenerate inferences when the component observational models include redundant
behaviors. By coupling the latent states together hidden Markov models can amplify these
problems if we are not careful.

For example the redundancy of hidden Markov models with fully exchangeable component
observational models at each state prevents data from unambiguously informing individual
latent states. Consequently the latent state dynamics will be wildly uncertain.

That said the coupling between neighboring latent states can actually reduce uncertainties is
less redundant component observational models.

For example if one latent state is complemented by only weakly informative observations then
inferences for the corresponding component probabilities using that local data alone will be
poor. More informative observations at the previous and following latent states, however,
can provide less uncertain inferences for those neighboring component probabilities. When
the behavior of the transition matrices is also well informed these neighboring inferences will
inform the behavior of the intermediate state far beyond what the local observations could do
on their own.

In general the more rigid the latent state dynamics are the more the constraints from each local
observation will propagate across the entire sequence of latent states. We can take advantage
of this rigidity, however, only when we have strong inferences for the transition probabilities.

Without informative observations at enough pairs of neighboring states we may not be able to
learn much about the behavior of the transition matrices. This is especially problematic for
non-homogeneous hidden Markov models models which are particularly data hungry.

30

https://betanalpha.github.io/assets/chapters_html/mixture_modeling.html

7 Demonstrations

To anchor all of this abstract math into a more practical context let’s work through some
implementations of hidden Markov models that demonstrate not only the basic features but
also some of the more sophisticated directions that we can take the methodology.

7.1 Setup
First and foremost we have to setup our local R environment.

par(family="serif", las=1, bty="1",
cex.axis=1, cex.lab=1, cex.main=1,
xaxs="i", yaxs="i", mar = c(5, 5, 3, 1))

library(rstan)
rstan_options(auto_write = TRUE) # Cache compiled Stan programs

options(mc.cores = parallel::detectCores()) # Parallelize chains
parallel:::setDefaultClusterOptions(setup_strategy = '"sequential")

util <- new.env()
source('mcmc_analysis_tools_rstan.R', local=util)
source('mcmc_visualization_tools.R', local=util)

7.2 Comparing and Contrasting Implementations

Let’s start with a relatively simple exercise that compares some of the basic implementation
strategies.

7.2.1 Simulate Data
We'll simulate data assuming K = 3 component observational models across I = 100 states.

I <- 100
K <=3

To avoid too much complexity we’ll assume a homogeneous transition matrix between all of
the neighboring latent states and the same component observational models at each latent
state.

31

simu <- stan(file="stan_programs/simu_data.stan",
algorithm="Fixed_param", seed=194838,
data=1list("I" = I), iter=1, chains=1, refresh=0)

simu_samples <- util$extract_expectand_vals(simu)

y_names <- sapply(1:I, function(i) pasteO('y[', i, '1'))
y <- sapply(y_names, function(name) simu_samples[[name]][1,1])

z_names <- sapply(1:I, function(i) pasteO('z[', i, ']'))
z <- sapply(z_names, function(name) simu_samples[[name]][1,1])

data <- list("I" = I, "y" =y, "K" =K)

7.2.2 Exploratory Data Analysis

There are a few summary statistics that are particularly natural to the structure assumed by
a hidden Markov model.

A histogram of all observations collapses the latent dynamics, allowing us to focus on the
aggregate behavior of the component observational models. This summary is particularly
informative when the component observational models are the same for all latent states.

par (mfrow=c(1, 1))

util$plot_line_hist(data$y, -8, 8, 1, xlab="y")

32

25 —
20 —
Q15 -
[
o
@)
O 10
o el]
0 I I I
-5 0 5
y

We can also isolate the latent dynamics as much as possible by plotting the observations against
the corresponding latent state indices. This is often referred to as an empirical trajectory.

par (mfrow=c(1, 1))

plot(l, type="n",
xlab="Latent State", xlim=c(0.5, data$I + 0.5),
ylab="y", ylim=c(-8, 8))

for (i in 1:data$I) {

lines(c(i - 0.5, i + 0.5), rep(data$yl[i]l, 2),
col="black", lwd=2)

33

20 40 60 80 10C

Latent State

7.2.3 Hidden Markov Model Log-Sum-Exp Implementation

Let’s first consider a hidden Markov model using the log-sum-exp implementation of the
forward and forward-background algorithms.

fit <- stan(file="stan_programs/hmm_log_sum_exp.stan",
data=data, seed=4938483,
warmup=1000, iter=2024, refresh=0)

Hamiltonian Monte Carlo doesn’t appear to have any issues quantifying the posterior distri-

bution.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samplesl <- util$extract_expectand_vals(fit)
base_samples <- util$filter_ expectands(samplesi,
c('mu', 'sigma',
'rho', 'gamma'),

34

check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Having modeled latent dynamics we can consider not only the histogram summary statistic
but also the empirical trajectory. In both cases there is no appreciable retrodictive tension
that would indicate any inadequacy of our modeling assumptions.

par (mfrow=c(1, 1))

util$plot_hist_quantiles(samplesl, 'y_pred', -8, 8, 1,
baseline_values=data$y, xlab='y')

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 8 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 75 predictive values (0.0%) fell above the binning.

25

20

15

Counts

10

35

par (mfrow=c(1, 1))

names <- sapply(l:data$I, function(i) pasteO('y_pred[', i, ']1"))

util$plot_disc_pushforward_quantiles(samplesl, names,
baseline_values=data$y,
xlab="Latent State", ylab="y")

1
SR AR
HE O R e

Latent State

Consequently we can have some confidence in the faithfulness of our posterior inferences.

This includes the inferred behavior of the component observational models.
par (mfrow=c(3, 2))

for (k in 1:data$kK) {
name <- pasteO('mul', k, ']")
util$plot_expectand_pushforward(samplesl[[namel], 75,
display_name=name, flim=c(-10, 10))

xs <- seq(-10, 10, 0.1)
ys <- dnorm(xs, 0, 10 / 2.32);
lines(xs, ys, lwd=2, col="white")

lines(xs, ys, lwd=1, col=util$c_mid_teal)

name <- pasteO('sigmal', k, ']"')

36

util$plot_expectand_pushforward(samplesi[[namel], 50,
display_name=name, flim=c(0, 5))

xs <- seq(0, 5, 0.1)

ys <- 2 * dnorm(xs, 0, 5 / 2.57);
lines(xs, ys, lwd=2, col="white")
lines(xs, ys, lwd=1, col=util$c_mid_teal)

}
k=l k=l
c 3 c S
@.c o<
- @ - @
B H
©
g:gl [| [| gg [| [| |
7= 7 s
”“.g—lo 5 0 5 10 L”‘.g 0 1 2 3 4 5
a a)
mul1] sigmal[1]
k=l k=)
c3 .2
@ s o<
- @ - @
Q Q
£ ﬂ £
3= [| T | | £ £ {ﬂ\ﬁ I —
» 3 w5
m§—10 -5 0 5 10 L”§ 0 1 2 3 4 5
a a)
mul2] sigmal[2]
k=l k=l
c3 c 3
£ < & c
- @ - @
g | ig | A
©
§§| | [T | 'g:gl [[[| |
» 3 n 5
m§—10 -5 0 5 10 L”§ 0 1 2 3 4 5
a a)
mu[3] sigma[3]

We can also make inferences about the behavior of the latent states.
par (mfrow=c(1, 1))
names <- sapply(l:data$I, function(i) pasteO('z[', i, ']'))

util$plot_disc_pushforward_quantiles(samplesl, names,
xlab="Latent State", ylab="z"

37

2.5

1.5

1.0 +—+ 1. - — - e

I I I I I
20 40 60 80 10C

Latent State

Alternatively we can look at the inferred initial state and transition probabilities that drive
the evolution of the latent states.

par (mfrow=c(1, 1))
names <- sapply(l:data$k, function(kk) pasteO('rho[', kk, ']'))
util$plot_disc_pushforward_quantiles(samplesl, names,

xlab="Component",
ylab="rho")

38

rho

I I I I I I |
05 10 15 20 25 3.0 3:&

Component

par (mfrow=c(3, 1))

for (k in 1:data$kK) {
names <- sapply(l:data$k,
function(kk) pasteO('gammal', k, ',', kk, ']"))
util$plot_disc_pushforward quantiles(samplesl, names,
xlab="Component",
ylab=paste("Row", k, "of Gamma"))

39

IS

1S

©

O 0.7 4

5 043

; 0.15 T T T T T 1

c 05 1.0 15 2.0 2.5 3.0 35
Component

(]

IS

1S

©

O 064

5 033

3 00 T T T | T |

c 05 1.0 15 2.0 2.5 3.0 35
Component

(]

IS

1S

©

O os

o 04

2 007 T | T i T |

c 05 1.0 15 2.0 2.5 3.0 35
Component

7.2.4 Hidden Markov Model Dynamic Rescaling Implementation
We can also implement hidden Markov models with dynamical rescaling.
fit <- stan(file="stan_programs/hmm_rescaled.stan",

data=data, seed=4938483,
warmup=1000, iter=2024, refresh=0)

No computational diagnostics have arisen with this new implementation.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples2,
c('mu', 'sigma',

40

'rho', 'gamma'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Moreover the posterior retrodictive performance not only continues to be great but also is
consistent with the performance we saw with the log-sum-exp model implementation.

par (mfrow=c(1, 1))

util$plot_hist_quantiles(samples2, 'y_pred', -8, 8, 1,
baseline_values=data$y, xlab='y')

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 5 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 70 predictive values (0.0%) fell above the binning.

25

20

15

Counts

10

41

par (mfrow=c(1, 1))

names <- sapply(l:data$I, function(i) pasteO('y_pred[', i, ']1"))

util$plot_disc_pushforward_quantiles(samples2, names,
baseline_values=data$y,
xlab="Latent State", ylab="y")

j:_g .::..-ﬁ
SRR

Latent State

This is not surprising given the similarly of the posterior inferences.
par (mfrow=c(3, 2))

for (k in 1:data$k) {
name <- pasteO('mul', k, ']")
util$plot_expectand_pushforward(samples2[[namel], 75,
display_name=name, flim=c(-10, 10))

xs <- seq(-10, 10, 0.1)

ys <- dnorm(xs, 0, 10 / 2.32);

lines(xs, ys, lwd=2, col="white")
lines(xs, ys, lwd=1, col=util$c_mid_teal)

name <- pasteO('sigmal', k, ']"')

util$plot_expectand_pushforward(samples2[[namel], 50,
display_name=name, flim=c(0, 5))

42

xs <- seq(0, 5, 0.1)

ys <- 2 * dnorm(xs, 0, 5 / 2.57);
lines(xs, ys, lwd=2, col="white")
lines(xs, ys, lwd=1, col=util$c_mid_teal)

-10 -5 0 5 10

Estimated Bin
Probabilities / Bin Widi
—
Estimated Bin
Probabilities / Bin Widi

mu[1] sigma[1]

Estimated Bin
Probabilities / Bin Widi
Estimated Bin

Probabilities / Bin Widt

mu[2] sigma[2]

-10 -5 0 5 10

Estimated Bin
Probabilities / Bin Widi
Estimated Bin
Probabilities / Bin Widt

=~

mu[3] sigma[3]
par (mfrow=c(1, 1))
names <- sapply(l:data$I, function(i) pasteO('z[', i, ']'))

util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Latent State", ylab="z")

43

2.5

1.5

1.0 +—— L. - — - e

I I I I I
20 40 60 80 10C

Latent State

par (mfrow=c(2, 1))

names <- sapply(l:data$k, function(kk) pasteO('rho[', kk, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,

xlab="Component",
ylab="rho")

for (k in 1:data$k) {
names <- sapply(l:data$k,
function(kk) pasteO('gammal', k, ',', kk, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Component",
ylab=paste("Row", k, "of Gamma"))

44

rho

04 ————
0.0

I I I I I I I
05 10 15 20 25 3.0 3=

Component

Row 1 of Gamma
QOO
[N NG

Component

owo

Row 2 of Gamm
QOO0

Component

oh
111

Row 3 of Gamma
eolole]

Component

7.2.5 Hidden Markov Model Built-In Implementation

Finally we can use the hidden Markov model functions that are provided in the Stan Mod-
eling Language. These functions take as inputs a matrix of component observational model

45

evaluations, a homogeneous transition matrix, and initial state probabilities. They then run
the forward and forward-backward algorithms using dynamic rescaling.

Using these built-in functions should give us equivalent results to the hand-coded implementa-
tion in the previous section. The advantage of the built-in functions is that because they are
written in C++ they should be a bit faster. On the other hand the limitation to homogeneous
hidden Markov models can limit their scope.

fit <- stan(file="stan_programs/hmm_builtin.stan",
data=data, seed=4938483,
warmup=1000, iter=2024, refresh=0)

Welcomingly the computational diagnostics remain clean.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples3 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples3,
c('mu', 'sigma',
'rho', 'gamma'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

We then can examine the posterior retrodictive and posterior inferential behaviors as before.
As expected everything appears to be consistent with the previous model implementations.

par (mfrow=c(1, 1))

util$plot_hist_quantiles(samples3, 'y_pred', -8, 8, 1,
baseline_values=data$y, xlab='y')

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 11 predictive values (0.0%) fell below the binning.

46

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 77 predictive values (0.0%) fell above the binning.

25
20

15

Counts

par (mfrow=c(1, 1))

names <- sapply(l:data$I, function(i) pasteO('y_pred[', i, ']1'))

util$plot_disc_pushforward_quantiles(samples3, names,
baseline_values=data$y,
xlab="Latent State", ylab="y")

47

ERTEINY
2k ke

Latent State

par (mfrow=c(3, 2))

for (k in 1:data$k) {
name <- pasteO('mul', k, ']")
util$plot_expectand_pushforward(samples3[[namel], 75,
display_name=name, flim=c(-10, 10))

xs <- seq(-10, 10, 0.1)

ys <- dnorm(xs, 0, 10 / 2.32);

lines(xs, ys, lwd=2, col="white")
lines(xs, ys, lwd=1, col=util$c_mid_teal)

name <- pasteO('sigmal', k, ']"')
util$plot_expectand_pushforward(samples3[[namel], 50,
display_name=name, flim=c(0, 5))

xs <- seq(0, 5, 0.1)

ys <- 2 * dnorm(xs, 0, 5 / 2.57);
lines(xs, ys, lwd=2, col="white")
lines(xs, ys, lwd=1, col=util$c_mid_teal)

48

k) k)
o c =
@ @ £
- @ - @
| LA
©
§§I | [| | gg | | | | |
» 3 "5
LIJ§—1o -5 0 5 10 L”§ 0 1 2 3 4 5
o a)
mu[1] sigma[1]
k) k)
c =S o
@.c o<
- 0 - @
Q [
g9 ﬂ g9
E 2 [—tl E 2 #
» 3 "5
L”g—m -5 0 5 10 L”§ 0 1 2 3 4 5
a a)
mul2] sigmal[2]
k) k)
c =S o
@ @ £
- 0 - @
| ilA
©
§§ [T T T 1 _gg T T T T 1
»n 3 "5
LI"§—1o -5 0 5 10 L”§ 0 1 2 3 4 5
a a)
mul3] sigmal[3]

par (mfrow=c(1, 1))
names <- sapply(l:data$I, function(i) pasteO('z[', i, ']1'))

util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Latent State", ylab="z")

49

2.5

1.5

1.0 +—— . - — - e

I I I I I
20 40 60 80 10C

Latent State

par (mfrow=c(2, 1))

names <- sapply(l:data$k, function(kk) pasteO('rho[', kk, ']'))
util$plot_disc_pushforward_quantiles(samples3, names,

xlab="Component",
ylab="rho")

for (k in 1:data$k) {
names <- sapply(l:data$k,
function(kk) pasteO('gammal', k, ',', kk, ']'))
util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Component",
ylab=paste("Row", k, "of Gamma"))

50

rho

0.8
0.4 P_
0.0 4 I I I i i |

05 10 15 20 25 3.0 3t

Component

PR
LI

I I I I I I
05 10 15 20 25 30 3t

Row 1 of Gamma
eoNole]

Component

owo

Row 2 of Gamm
QOO

Component

coo
(@ NYeo)
[111

I I I I I I
05 10 15 20 25 3.0 3=

Row 3 of Gamma

Component
7.2.6 Implementation Consistency Check

To properly compare the outputs of these three model implementations we really need to
visualize them next to each other.

51

As expected, or at least for what we hoped, the posterior retrodictive performance for the
empirical trajectories is consistent across all three model implementations.

par (mfrow=c(3, 1))
names <- sapply(l:data$I, function(i) pasteO('y_pred[', i, ']1'))

util$plot_disc_pushforward_quantiles(samplesl, names,
baseline_values=data$y,
xlab="Latent State", ylab="y",
main="Log-Sum-Exp")

util$plot_disc_pushforward_quantiles(samples2, names,
baseline_values=data$y,
xlab="Latent State", ylab="y",
main="Rescaling")

util$plot_disc_pushforward_quantiles(samples3, names,
baseline_values=data$y,
xlab="Latent State", ylab="y",
main="Built-In")

Log-Sum-Exp
> 2 3- -p-j’.r.-:.:-‘ __;."-(wasTe '~’.-.-’-:--==’= “..'-' -as '-;--_- s 2
-4 T == T - z == = e amamiae
[T T T I
20 40 60 80 100
Latent State
Rescaling
- : 3_ -‘»-j—"-:.:-‘ e k-m-.-—..:.-"- R et s 2
-4 = == e = s == = 2 s smamam
[T T T I
20 40 60 80 100
Latent State
Built-In
> 2 ﬂ- --_j—"'.:.:. B s ey ‘a'.-"-.._._ e
-4 - ==y e - s == - 2= immemis
[T T T I
20 40 60 80 100

Latent State

52

So too is the inferred behavior of the latent states.

par (mfrow=c(3, 1))

names <- sapply(l:data$I, function(i) pasteO('z[', i, ']'"))

util$plot_disc_pushforward_quantiles(samplesl, names,

xlab="Latent State",

main="Log-Sum-Exp")

util$plot_disc_pushforward_quantiles(samples2, names,

xlab="Latent State",

main="Rescaling")

util$plot_disc_pushforward_quantiles(samples3, names,

xlab="Latent State",

main="Built-In")

Log—-Sum-Exp
3.0 —_— —— —_— —
N 20 - - -_ - —— - -
1.0
20 40 60 80 100
Latent State
Rescaling
3.0 —_— —— —_— —
N 20 - - -_ - —— - -
1.0
20 40 60 80 100
Latent State
Built-In
3.0 —_— —— —_— —
N 20 - - -_ - —— - -
1.0
20 40 60 80 100

Latent State

ylab="z",
ylab="z",
ylab="z",

The consistency continues into the inferences for the dynamical parameters.

53

par (mfrow=c(3, 1))
names <- sapply(l:data$k, function(kk) pasteO('rho[', kk, ']'))

util$plot_disc_pushforward_quantiles(samplesl, names,
xlab="Component",
ylab="rho",
display_ylim=c(0, 1),
main="Log-Sum-Exp")

util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Component",
ylab="rho",
display_ylim=c(0, 1),
main="Rescaling")

util$plot_disc_pushforward_quantiles(samples3, names,
xlab="Component",
ylab="rho",
display_ylim=c(0, 1),
main="Built-In")

Log—-Sum-Exp
o 038
£ 04
0.0 T T T T T |
0.5 1.0 15 2.0 25 3.0 35
Component
Rescaling
o 038
£ 04
0.0 T T T T 1
0.5 1.0 15 2.0 25 3.0 35
Component
Built=In
o 038
£ 04
0.0 T I Y Y
0.5 1.0 15 2.0 25 3.0 35
Component

par (mfrow=c(3, 3))

for (k in 1:data$k) {
names <- sapply(l:data$X,
function(kk) pasteO('gammal', k, ',', kk,

Row 2 of Gamma Row 1 of Gamm

Row 3 of Gamma

util$plot_disc_pushforward_quantiles(samplesl, names,

xlab="Component",
ylab=paste("Row", k,
main="Log-Sum-Exp")

util$plot_disc_pushforward_quantiles(samples2, names,

xlab="Component",
ylab=paste("Row", k,
main="Rescaling")

util$plot_disc_pushforward_quantiles(samples3, names,

Component

Log—-Sum-Exp

coo
ohrm®

Row 3 of Gamma

05 20 35

Component

Row 1 of Gamm

Row 2 of Gamma

Rescaling

ocoo
(S NEN]
LU

MMTTIrT11
05 20 35

Component

Rescaling

—

05 20 35

000
ocwo

Component

Rescaling

-

05 20 35

coo
ohrm

Component

Row 2 of Gamma Row 1 of Gamm

Row 3 of Gamma

xlab="Component",
ylab=paste("Row", k,
main="Built-In")

Built=In

Component

Built=In

ocoo
owo

05 20 35

Component

Built=In

-

05 20 35

coco
ohrhm

Component

55

‘1))

"of Gamma"),

"of Gamma"),

"of Gamma"),

Finally the inferred behavior of the component observational models is the same across all
three model implementations.

par (mfrow=c(3, 2))

for (k in 1:data$k) {

name <- pasteO('mul', k, ']")

util$plot_expectand_pushforward(samplesl[[name]],
75, flim=c(-10, 10),
display_name=name)

util$plot_expectand_pushforward(samples2[[name]],
75, flim=c(-10, 10),
col=util$c_mid,
border="#DDDDDD88",
add=TRUE)

util$plot_expectand_pushforward(samples3[[name]],
75, flim=c(-10, 10),
col=util$c_light,
border="#DDDDDD88",
add=TRUE)

xs <- seq(-10, 10, 0.1)

ys <- dnorm(xs, 0, 10 / 2.32);

lines(xs, ys, lwd=2, col="white")
lines(xs, ys, lwd=1, col=util$c_mid_teal)

name <- pasteO('sigmal', k, ']")

util$plot_expectand_pushforward(samplesl[[name]],
50, flim=c(0, 5),
display_name=name)

util$plot_expectand_pushforward(samples2[[name]],
50, flim=c(0, 5),
col=util$c_mid,
border="#DDDDDD88",
add=TRUE)

util$plot_expectand_pushforward(samples3[[namel],
50, flim=c(0, 5),
col=util$c_light,
border="#DDDDDD88",
add=TRUE)

xs <- seq(0, 5, 0.1)
ys <= 2 * dnorm(xs, 0, 5 / 2.57);

56

lines(xs, ys, lwd=2, col="white")
lines(xs, ys, lwd=1, col=util$c_mid_teal)

}
k) k)
cs c s
& < @<
- @ - @
&% 2%
© ©
E% [| | | | gg [[| | |
05 » 35
LIJ%—10 5 0 5 10 ”J§ 0 1 2 3 4 5
a a)
mul1] sigmal[1]
k) k=)
c3s c s
i £ @D <
- @ - @
83 85 | A
©) ©
gé [[[| | gg [[F [[|
w5 » 35
L”%—10 5 0 5 10 ”Jg 0 1 2 3 4 5
a a)
mul[2] sigmal[2]
k) k=)
cs c s
& < @<
- @ ~ - @ H
83 83
g |
gé [| | | | gg [| | | |
n 5 » 3
L”%—10 5 0 5 10 ”J§ 0 1 2 3 4 5
a a)
mu[3] sigma[3]

7.2.7 Static/Dynamic Mixture Model Comparison

Finally to see if there is any advantage to modeling the dynamics of the latent states let’s
compare the hidden Markov model inferences to inferences from a static mixture model.

fit <- stan(file="stan_programs/static_mixture.stan",

data=data, seed=4938483,
warmup=1000, iter=2024, refresh=0)

The computational diagnostics are clean.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

57

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples4 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples4,
c('mu', 'sigma',
'lambda'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

We also see excellent posterior retrodictive performance with respect to the histogram summary
statistic. When the component observational models are homogeneous across the latent states
static mixture models often perform reasonably well in aggregate even though they ignore the
latent dynamics.

par (mfrow=c(1, 1))

util$plot_hist_quantiles(samples4, 'y_pred', -8, 8, 1,
baseline_values=data$y, xlab='y')

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 48 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 647 predictive values (0.2%) fell above the binning.

o8

25

20

15

Counts

10

Inferences for the location and scale of the first component observational model are nearly
identical between the dynamic and static models, but the inferences for the second and third
component observational model configurations are more strongly informed with the hidden
Markov model.

par (mfrow=c(3, 2))

mu_lims <- list(c(-4, -2), c(-5, 5), c(3.5, 6))
mu_ylims <- list(c(0, 2.75), c(0, 1.25), c(0, 4))

sigma_lims <- 1list(c(0.25, 1.75), c(0, 4.5), c(0.25, 2))
sigma_ylims <- list(c(0, 3.5), c(0, 1.5), c(0, 5.5))

for (k in 1:data$k) {

name <- pasteO('mul', k, ']")

util$plot_expectand_pushforward(samples3[[name]], 50,
display_name=name,
flim=mu_lims[[k]],
ylim=mu_ylims [[k]])

util$plot_expectand_pushforward(samples4[[name]], 50,
display_name=name,
flim=mu_ lims[[k]],
ylim=mu_ylims[[k]],
col=util$c_mid,
border="#DDDDDD88" ,

59

add=TRUE)

name <- pasteO('sigmal', k, ']")

util$plot_expectand_pushforward(samples3[[namel], 50,
display_name=name,
flim=sigma_lims[[k]],
ylim=sigma_ylims[[k]])

util$plot_expectand_pushforward(samples4[[namel]], 50,
display_name=name,
flim=sigma_ lims[[k]],
ylim=sigma_ylims[[k]],
col=util$c_mid,
border="#DDDDDD88" ,
add=TRUE)

Warning in util$plot_expectand_pushforward(samples4[[name]], 50, display_name
name, : 1 value (0.0%) fell below the histogram binning.

Warning in util$plot_expectand_pushforward(samples4[[namel], 50, display_name
name, : 1 value (0.0%) fell above the histogram binning.

60

T T T 1
-40 -35 -3.0 -25 -20

Estimated Bin

Probabilities / Bin Wid1

Estimated Bin
Probabilities / Bin Widl1

mu[1] sigma[1]

o
=
N
w
S

Estimated Bin
Probabilities / Bin Wid1

Estimated Bin
Probabilities / Bin Widl1

mu[2] sigmal2]

05 10 15 2

35 40 45 50 55 6.0 .0

Estimated Bin
Probabilities / Bin Widl1

Estimated Bin
Probabilities / Bin Wid1

muf3] sigma(3]

Even when a static mixture model adequately captures the aggregate behavior of the observed
data the ignorance of any latent dynamics generally results in worse inferential uncertainties.

7.3 Modeling Unobserved Latent States

Now let’s explore some of the ways that we can accommodate latent states that have been
only partially observed.

For this exercise we’ll use a data set where there are fewer observations than latent states.
Consequently at least some of the latent states have to be missing complementary data.

data <- read_rdump("data/miss.data.R")

cat(sprintf('%i latent states', data$I))

100 latent states

cat (sprintf('%i observational model components', data$k))

3 observational model components

61

cat(sprintf('%i observations', data$N))

60 observations

If we look at the empirical trajectory we can see two prominent gaps in the observations.
par (mfrow=c(1, 1))

plot(1l, type="n",
xlab="Latent State", xlim=c(0.5, data$I + 0.5),
ylab="y", ylim=c(-8, 8))

for (miss_win in 1list(c(31, 55), c(76, 90))) {
polygon(c(miss_win[1] - 0.5, miss_win[2] + 0.5,
miss_win[2] + 0.5, miss_win[1] - 0.5),
c(-8, -8, 8, 8), col="#DDDDDD", border=NA)

for (n in 1:data$N) {
lines(c(data$state[n] - 0.5, data$state[n] + 0.5),
rep(data$y[nl, 2),
col="black", lwd=2)

b
59 %
> 0—--- : -- i)

20 40 60 80 10C

Latent State

62

The most straightforward way to unobserved latent states is to just replace the log observa-
tional model outputs with zeroes whenever a latent state is unobserved. In particular this
allows us to use hidden Markov model functions in Stan.

For convenience this Stan program fills in the unobserved latent states with proxy observations
and then constructs a binary variable indicating whether or not each latent state is observed.
This just makes it easier to work sequentially through the latent states.

fit <- stan(file="stan_programs/hmm_builtin_partial.stan",
data=data, seed=4938483,
warmup=1000, iter=2024, refresh=0)

There are some indications of mild autocorrelations but no indications of inaccurate computa-
tion.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samplesl <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samplesi,
c('mu', 'sigma',
'rho', 'gamma'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

mul[2]:
Chain 1: hat{ESS} (73.717) is smaller than desired (100).
Chain 2: hat{ESS} (74.010) is smaller than desired (100).
Chain 3: hat{ESS} (52.720) is smaller than desired (100).

mu[3] :
Chain 1: hat{ESS} (94.008) is smaller than desired (100).

gamma[1,1]:
Chain 1: hat{ESS} (82.813) is smaller than desired (100).
Chain 3: hat{ESS} (52.942) is smaller than desired (100).

gamma[1,2]:

63

Chain 1: Right tail hat{xi} (0.280) exceeds 0.25.

Chain 1: hat{ESS} (84.315) is smaller than desired (100).

Chain 3: hat{ESS} (52.267) is smaller than desired (100).
gamma[2,3] :

Chain 3: hat{ESS} (97.845) is smaller than desired (100).
Large tail hat{xil}s suggest that the expectand might not be

sufficiently integrable.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

The posterior retrodictive performance is solid.
par (mfrow=c(1, 1))

util$plot_hist_quantiles(samplesl, 'y_pred', -10, 12, 2,
baseline_values=data$y, xlab='y')

Warning in check_bin_containment (bin_min, bin_max, collapsed_values,
"predictive value"): 8 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment (bin_min, bin_max, collapsed_values,
"predictive value"): 4 predictive values (0.0%) fell above the binning.

64

Counts

par (mfrow=c(1, 1))

names <- sapply(l:data$N, function(n) pasteO('y_pred[', n, ']1"))

util$plot_disc_pushforward quantiles(samplesl, names,
baseline_values=data$y,

xlab="0bserved Latent State",

ylab="y",
xticklabs=data$state)

65

1 6 12 19 26 58 65 72 94

Observed Latent State

Unsurprisingly inferences for the latent states become increasingly uncertain within the unob-
served gaps.

par (mfrow=c(1, 1))

names <- sapply(l:data$I, function(i) pasteO('z[', i, ']'))
util$plot_disc_pushforward_quantiles(samplesl, names,

xlab="Latent State", ylab="z")
abline(v=30.5, lwd=2, 1lty=3, col="#DDDDDD")
abline(v=55.5, lwd=2, lty=3, col="#DDDDDD")
abline(v=75.5, lwd=2, lty=3, col="#DDDDDD")
abline(v=90.5, lwd=2, 1lty=3, col="#DDDDDD")

66

30y — -
2.5 —

N 2048 - ! !
1.5 -
10 4 L. - - -

I I I I I
20 40 60 80 10C

Latent State

The other way that we can take unobserved latent states into account is to remove them
and update the transition matrices between the observed latent states. Because this results
in a non-homogeneous hidden Markov model we can no longer use the Stan hidden Markov
model functions. Fortunately this non-homogeneous model is not too difficult to implement
by hand.

There are a few ways that we could implement the heterogeneous transition matrices. For
example we could pre-compute and then store each transition matrix, but this would introduce
a pretty large memory burden. A more effective approach is to compute each transition matrix
only when they are used. That said the matrix-matrix products needed for this can be pretty
expensive, especially across long gaps of unobserved latent states.

In this Stan program I don’t compute the collapsed transition matrices directly but rather
iteratively compute their action on the c; and 3, in the forward and backward algorithms. This
requires only matrix-vector products which are less expensive than matrix-matrix products,
especially if K is large.

fit <- stan(file="stan_programs/hmm_rescaled_partial.stan",

data=data, seed=4938483,
warmup=1000, iter=2024, refresh=0)

We see the same hints are moderate autocorrelations in the computational diagnostics but
nothing that suggests we shouldn’t trust our posterior computation.

67

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples2,
c('mu', 'sigma',
'rho', 'gamma'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

mul1]:
Chain 1: hat{ESS} (90.239) is smaller than desired (100).
Chain 4: hat{ESS} (76.016) is smaller than desired (100).

[EY

mul[2]:
Chain 1: hat{ESS} (50.050) is smaller than desired (100).
Chain 3: hat{ESS} (95.651) is smaller than desired (100).
Chain 4: hat{ESS} (52.991) is smaller than desired (100).

mu[3] :
Chain 4: hat{ESS} (80.004) is smaller than desired (100).

sigmal[3]:
Chain 4: hat{ESS} (85.254) is smaller than desired (100).

gammal[1,1]:
Chain 1: hat{ESS} (41.724) is smaller than desired (100).
Chain 4: hat{ESS} (38.617) is smaller than desired (100).

gammal[1,2]:
Chain 4: Right tail hat{xi} (0.322) exceeds 0.25.
Chain 1: hat{ESS} (37.214) is smaller than desired (100).
Chain 4: hat{ESS} (36.432) is smaller than desired (100).

gamma[2,3] :

Chain 1: hat{ESS} (87.830) is smaller than desired (100).
Chain 4: hat{ESS} (67.000) is smaller than desired (100).

68

Large tail hat{xil}s suggest that the expectand might not be
sufficiently integrable.

Small empirical effective sample sizes result in imprecise Markov chain
Monte Carlo estimators.

We don’t see any indications of poor retrodictive performance.
par (mfrow=c(1, 1))

util$plot_hist_quantiles(samples2, 'y_pred', -10, 12, 2,
baseline_values=data$y, xlab='y')

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 9 predictive values (0.0%) fell below the binning.

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 10 predictive values (0.0%) fell above the binning.

20

15

10

Counts

-10

69

par (mfrow=c(1, 1))

names <- sapply(l:data$N, function(n) pasteO('y_pred[', n, ']1'))

util$plot_disc_pushforward_quantiles(samples2, names,
baseline_values=data$y,
xlab="0bserved Latent State",
ylab="y",
xticklabs=data$state)

1 6 12 19 26 58 65 72 94

Observed Latent State

Either way we approach this problem our posterior inferences are consistent with each other.
For example inferred behavior for the the observed latent states is equivalent.

par (mfrow=c(2, 1))

names <- sapply(data$state, function(i) pasteO('z[', i, ']'))

util$plot_disc_pushforward_quantiles(samplesl, names,
xlab="0bserved Latent State",
ylab="z",
xticklabs=data$state,
main="Expanded Model")

abline(v=30.5, lwd=2, 1lty=3, col="#DDDDDD")

abline(v=50.5, lwd=2, lty=3, col="#DDDDDD")

names <- sapply(l:data$N, function(n) pasteO('z[', n, ']'))

70

util$plot_disc_pushforward_quantiles(samples2, names,
xlab="0bserved Latent State",
ylab="z",
xticklabs=data$state,
main="Collapsed Model")

abline(v=30.5, lwd=2, 1ty=3, col="#DDDDDD")

abline(v=50.5, lwd=2, 1lty=3, col="#DDDDDD")

Expanded Model

304 gy — — — —
N 2.0] Il ll ll. L |
1.0 5. =i -r[__ 1 . A i pi— |

1 6 12 19 26 58 65 72 94

Observed Latent State

Collapsed Model

3.0 5 — —
N _] Il ll II; -il.-l 11
ig:__ | | P P T |

1 6 12 19 26 58 65 72 94

Observed Latent State
So too is the inferred behavior for the base transition matrix.
par (mfrow=c(3, 2))
for (k in 1:K) {
names <- sapply(l:data$k,
function(kk) pasteO('gammal', k, ',', kk, ']"))
ylab <- paste("Row", k, "of Gamma")
util$plot_disc_pushforward_quantiles(samplesl, names,
xlab="Component", ylab=ylab,

main="Expanded Model")

util$plot_disc_pushforward_quantiles(samples2, names,

71

}

E Expanded Model

©

° 021

= T T T 1

c 05 15 25 35

Component

Expanded Model

Row 2 of Gamma
ocoo

Component

Expanded Model

Row 3 of Gamma
o
N
|

Component

Row 2 of Gamma Row 1 of Gamm

Row 3 of Gamma

xlab="Component", ylab=ylab,
main="Collapsed Model")

Collapsed Model

I I I I]
15 2.5 3.5

Component

Collapsed Model

Component

Collapsed Model

Component

As well as the component observational model configurations.

par (mfrow=c(2, 2))

names <- sapply(l:data$k, function(k) pasteO('mul', k,

1))

util$plot_disc_pushforward_quantiles(samplesl, names,

xlab="Component", ylab="mu",
main="Expanded Model")

util$plot_disc_pushforward_quantiles(samples2, names,

xlab="Component", ylab="mu",
main="Collapsed Model")

names <- sapply(l:data$k, function(k) pasteO('sigmal', k, ']1"'))

util$plot_disc_pushforward_quantiles(samplesl, names,

72

xlab="Component", ylab="sigma",

main="Expanded Model")

util$plot_disc_pushforward_quantiles(samples2, names,

Expanded Model

mu
NON D
|

05 15 25 35

Component

Expanded Model

. 25

e 20

5 15 M8
1.0 —

05 15 25 35

Component

xlab="Component", ylab="sigma",

main="Collapsed Model")

Collapsed Model

4_ S
=] 2 —
g & —
2
T 1T T 11
05 15 25 3t
Component
Collapsed Model
2.5
g 20
S 15 S
1.0 —

05 15 25 3t

Component

7.4 Hidden Markov Models In Practice

Let’s conclude with an analysis that at least approximates some of the messiness that we might

encounter when using hidden Markov models in practice.

The data for this analysis were collected every month from detectors that record how often a
certain phenomena appeared locally in a particular environment. For example these counts
could be the number of appearances of a certain animal species in field cameras or the number

of insects caught in traps.

7.4.1 Exploratory Data Analysis

For this new data set we have more observations than months.

73

data <- read_rdump("data/analysis.data.R")

cat(sprintf('%i months', data$I))

200 months

cat(sprintf('%i observations', data$N))

300 observations

In fact some months are accompanied by observations from multiple detectors and some are
completely unobserved. This heterogeneity in the data collection is not at all uncommon in
practice.

par (mfrow=c(1, 1))
barplot(data$state_N,

space=0, col=util$c_dark_teal, border="white",
xlab="Month", ylab="Number of Observations")

Number of Observations
w
|

There definitely seem to be multiple, distinct features when we aggregate the data together.

Month

2 —
i
O —J

74

par (mfrow=c(1, 1))

util$plot_line_hist(data$y, -0.5, 20.5, 1, xlab="Counts")

100 -
80

60 —

Counts

40

20

0 — I I]
0 5 10 15 20

Counts

We can still plot the observed data against their corresponding latent states, but because
there are multiple observations for some latent states we can no longer interpret this as a
single empirical trajectory.

par (mfrow=c(1, 1))

plot(l, type="n",
xlab="Month", x1im=c(0.5, data$I + 0.5),
ylab="Counts", ylim=c(-0.5, 15.5))

for (i in 1:data$I) {
for (n in data$state_start_idx[i] :data$state_end_idx[i])
lines(c(i - 0.5, i + 0.5), rep(data$y[n], 2),
col="black", 1lwd=2)

75

15 - -
10 4 - R —— e .-
(%] - - - - cmeme = o= -
IS e . e e .
>
o - . ces @ @ o -eme o oo semes o
@) e e e e e e e e im = -
5 —] - - - o o e e = - e
O e e com—— e - e e == cm - - em come emmme =
| | | |
50 100 150 20C
Month

In order to construct a single trajectory we need to reduce the observations at each latent state
to a single value. For example we might look at the evolution of the empirical average along
the latent states.

par (mfrow=c(1, 1))

plot(l, type="n",
xlab="Month", x1im=c(0.5, data$Il + 0.5),
ylab="Count Average", ylim=c(-0.5, 15.5))

for (i in 1:data$I) {
ave_y <- mean(data$y[data$state_start_idx[i] :data$state_end_idx[i]])
lines(c(i - 0.5, i + 0.5), rep(ave_y, 2),
col="black", lwd=2)

76

15 — -
%
g 10 B
g - - . . - o -- - - * eme
Z = ST N
= eI Tt
8 T e el e e
8§ s54-°.07 - Tl
0 — e e e mmemmem cete s mmm e ecmme =
[[[[
50 100 150 20C
Month
7.4.2 Model 1

For this analysis let’s say that our available domain expertise suggests that the environmental
activity cycles between low and high periods, and we are interested in learning about rates
of transition between these two behaviors. This is an excellent setting for a hidden Markov
model, using two Poisson observational models to capture the environmental behaviors.

In other to accommodate the heterogeneous number of observations we just have to be careful
in how we evaluate the component observational model outputs at each iteration.

fit <- stan(file="stan_programs/hmm_analysisl.stan",

data=data, seed=4938483,
warmup=1000, iter=2024, refresh=0)

Nothing of concern in the computational diagnostics.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

7

samplesl <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samplesi,
c('lambdal', 'lambda2',
'rho', 'taull', 'tau22'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Unfortunately the posterior retrodictive performance leaves much to be desired. In order to
capture the observed peak at zero counts as best as possible the posterior predictive distribution
introduces an excess of probability at small but non-zero counts. Even with that contortion
the model still struggles to produce as many zero counts.

par (mfrow=c(1, 1))

util$plot_hist_quantiles(samplesl, 'y_pred', -0.5, 20.5, 1,
baseline_values=data$y, xlab='Counts')

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 34 predictive values (0.0%) fell above the binning.

100

80 —

60 —

Counts

40 — [

Counts

This tension is more evident if we zoom in.

78

par (mfrow=c(1, 1))
util$plot_hist_quantiles(samplesl, 'y_pred', -0.5, 5.5, 1,

baseline_values=data$y, xlab='Counts')

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 521482 predictive values (42.4%) fell above the binning.

Warning in check_bin_containment(bin_min, bin_max, baseline_values, "observed
value"): 132 observed values (44.0%) fell above the binning.

100

80 —

60 —

Counts

40 [

R B S E
_———

Counts

Comparing conditional averages we can see that the observed data concentrates much more
strongly at zero than the posterior predictive distribution.

par (mfrow=c(1, 1))

names <- sapply(l:data$N, function(n) pasteO('y_pred[', n, ']"))

util$plot_conditional mean_quantiles(samplesl, names, data$state,
-0.5, data$I + 0.5, 1, data$y,
xlab="Month")

79

15 -

Marginal Quantiles of Conditional Mee

Month

Again it can help to zoom in to emphasize the clashing behavior.
par (mfrow=c(1, 1))

names <- sapply(l:data$N, function(n) pasteO('y_pred[', n, ']1'))

util$plot_conditional_mean_quantiles(samplesl, names, data$state,
-0.5, data$I + 0.5, 1, data$y,
xlab="Month",
display_ylim=c(-0.25, 2.25))

80

lql.))

=

S 20— e T

e ;

€ 15- !

@) Tl d

©

7)) 10 —iu® 7

2

N |

S 05 — . ‘ ‘

o TR I

©

S 0.0 At AR NLILLITRIN D RN

o

S

s | I I [
0 50 100 150 20C

Month
7.4.3 Model 2

In the process of complaining about our frustrations with this poor retrodictive performance
one of our colleagues asks us if we took the operation of the detectors into account. Seeing
the confused look on our face they explain that sometimes the detectors at a site all break
and record zero counts regardless of how the local environment behaved that month. The only
problem is that the status of the detectors were not themselves deemed important enough to
record.

With the benefit of hindsight the poor predictive performance of our initial model now makes
a lot more sense. In order more adequately model these observations we need to incorporate a
third component observational model into our hidden Markov model to accommodate broken
detectors.

To do this let’s introduce an auxiliary sequence of latent states that indicates whether the
detectors were working or not. Assuming that the the probability of the detectors breaking
each month is the same regardless of their operation in the previous month the homogeneous
transition matrix for this auxiliary latent state becomes

Combined with the two possible values of the environmental latent state this gives us four
elements of each joint latent state,

81

1: Working detector, low environmental activity
2: Working detector, high environmental activity
3: Broken detector, low environmental activity
4: Broken detector, high environmental activity.

N N N N

When z = 1 the local observations are modeled with the low environmental activity Poisson
model. For z = 2 the local observations are modeled the high environmental activity Poisson
model. Finally for both z = 3 and z = 4 the local observations are modeled with a Dirac
model concentrating at zero.

The transition matrix of these joint latent states is then given by the tensor product of the
auxiliary transition matrix with our initial environmental transition matrix. By working with
multiple latent sequences we can maintain the initial environmental transition probabilities
and their interpretations.

fit <- stan(file="stan_programs/hmm_analysis2.stan",
data=data, seed=4938483,
warmup=1000, iter=2024, refresh=0)

All quiet on the computational front.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples2,
c('lambdal', 'lambda2',
'rho', 'taull', 'tau22',
'taud'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

The posterior retrodictive performance has drastically improved.

82

par (mfrow=c(1, 1))

util$plot_hist_quantiles(samples2, 'y_pred', -0.5, 20.5, 1,
baseline_values=data$y, xlab='y')

Warning in check_bin_containment(bin_min, bin_max, collapsed_values,
"predictive value"): 56 predictive values (0.0%) fell above the binning.

100 —hE

80 —

60 —

Counts

40

par (mfrow=c(1, 1))

state <- c(sapply(l:data$I, function(i) rep(i, data$state N[i])),
recursive=TRUE)

names <- sapply(l:data$N, function(n) pasteO('y_pred[', n, ']1'))

util$plot_conditional _mean_quantiles(samples2, names, data$state,
-0.5, data$I + 0.5, 1, data$y,
xlab="Month")

83

15 -

Marginal Quantiles of Conditional Mee

Month

Now we can examine our posterior inferences with confidence.

For example we can investigate either the joint latent state behaviors or just the environmental
latent state behaviors.

par (mfrow=c(2, 1))

names <- sapply(l:data$I, function(i) pasteO('z[', i, ']1'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="Month",
ylab="Joint Latent State")

names <- sapply(l:data$I, function(i) pasteO('z_env[', i, ']1'))
util$plot_disc_pushforward_quantiles(samples2, names,

xlab="Month",

ylab="Environmental Latent State")

84

25 3 TN LR W

Joint Latent Stai

1.0
50 100 150 20C
Month
%)
I=
(D)
<
= 18 MM iRliuislE
£ {giﬂm
(]
gL
o 50 100 150 20C
=
L Month

We can examine the dynamics of the latent states. Note that the site detectors seem to
work only about two-thirds of the time. Moreover the high activity state appear to be more
persistent than the low activity state.

par (mfrow=c(1, 1))
names <- sapply(1:4, function(kk) pasteO('rho[', kk, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,

xlab="Component",
ylab="rho")

85

rho

Component

par (mfrow=c(1, 3))

for (name in c('taull', 'tau22', 'taud')) {
util$plot_expectand_pushforward(samples2[[name]], 50,
display_name=name,
flim=c(0, 1))

86

Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width

/L A S 1

0.0 0.6 0.0 0.6 0.0 0.6

taull tau22 taud

Finally we can consider the main behavior of interest: the two environmental activity intensity
parameters.

par (mfrow=c(1, 2))
for (name in c('lambdal', 'lambda2')) {

util$plot_expectand_pushforward(samples2[[namel], 25,
display_name=name)

87

Estimated Bin
Probabilities / Bin Width
Estimated Bin
Probabilities / Bin Width

1.0 20 7.0 8.0

lambdal lambda?2

By isolating the environmental behaviors from the detector behaviors we not only advance
our immediate scientific goals but also put ourselves in a position to make predictions under
various hypotheses for future detector behavior. This in turn helps us motivate improved
experimental procedures moving forwards.

7.4.4 Inferential Comparison

What would happen if we had been careless and ignored the poor retrodictive performance
exhibited by our initial model?

Firstly our inferences for the low activity behavior would substantially underestimate the
more realistic behavior. The high activity behavior, which is far less easy to confuse with the
behavior of broken detectors, is less compromised.

par (mfrow=c(1, 2))

name <- 'lambdal'
util$plot_expectand_pushforward(samplesl[[namel]], 50,
display_name=name,
flim=c(0, 2.5))
text(1.25, 5, 'Model 1', col=util$c_dark)

util$plot_expectand_pushforward(samples2[[name]], 50,

display_name=name,
flim=c(0, 2.5),

88

col=util$c_mid,
border="#DDDDDD88" ,
add=TRUE)

text (2.0, 2.5, 'Model 2', col=util$c_mid)

name <- 'lambda?2'

util$plot_expectand_pushforward(samplesl[[namel]], 50,
display_name=name,
flim=c(6, 9))

text(6.75, 1.5, 'Model 1', col=util$c_dark)

util$plot_expectand_pushforward(samples2[[name]], 50,
display_name=name,
flim=c(6, 9),
col=util$c_mid,
border="#DDDDDD88" ,
add=TRUE)

text (8.5, 1.5, 'Model 2', col=util$c_mid)

e e
S S
c =S ||Vlodel 1 c = flodelfiode
m .S m .S
- 0 - 0
g2 g2
I
E 2 E5
LIUJ) _(% Model LIUJ) _(%
o] o]
e e
a a
T 11711
0.0 15 6.0 75 9.C
lambdal lambda2

The inferences derived from the first model are also inaccurate for both environmental transi-
tion probabilities, especially for the high activity persistence probability 7.

89

par (mfrow=c(1, 2))

name <- 'taull'

util$plot_expectand_pushforward(samplesi[[name]], 50,
display_name=name,
flim=c(0, 1))

text (0.8, 5, 'Model 1', col=util$c_dark)

util$plot_expectand_pushforward(samples2[[namel], 50,
display_name=name,
flim=c(0, 1),
col=util$c_mid,
border="#DDDDDD88" ,
add=TRUE)

text (0.2, 3, 'Model 2', col=util$c_mid)

name <- 'tau22'
util$plot_expectand_pushforward(samplesi[[name]], 50,
display_name=name,
flim=c(0, 1), ylim=c (O,
text(0.25, 4.5, 'Model 1', col=util$c_dark)

util$plot_expectand_pushforward(samples2[[namel], 50,
display_name=name,
flim=c(0, 1),
col=util$c_mid,
border="#DDDDDD88" ,
add=TRUE)

text (0.8, 9.5, 'Model 2', col=util$c_mid)

90

10))

Model
= =
= =
= =
S odel s c "
- @0 - @0
L L
o o
£ 2 £-2 flodells
48 E ode 48 E
W ‘@ W c
o] o]
o o
o o
J Y
T 1T
0.0 0.6 0.0 0.6
taull tau22

Without accounting for the full structure of the data generating process we cannot extract
accurate inferences for the phenomenology of interest!

8 Conclusion

Hidden Markov models generalize mixture observational modeling by allowing for persistent
dynamics in the behavior of the data generating process. What really makes hidden Markov
models so powerful in practice is that the forward and backward algorithms allow us to ef-
ficiently marginalize out the component assignment variables. With care in how exactly we
define the latent states and the component observational model outputs these marginalization
algorithms allow hidden Markov models to be used in a wide range of sophisticated applica-
tions.

Appendix: State-Space Models

The construction of hidden Markov models is actually quite a bit more general than what we
have considered in this chapter (Cappé, Moulines, and Rydén (2005)). In particular the math-
ematical results generalize pretty immediately to any mixture observational model, including
not only discrete mixture models but also continuous mixture models. This is useful if, for
example, we want to model the evolution of a continuous latent state such as the position and
velocity of a moving object.

91

Most references reserve hidden Markov model for finite latent states, using the term state
space model to refer to models with the same conditional structure but more general latent
states. That said this convention is not universal and it never hurts to use redundant language,
such as “discrete hidden Markov model” or even “finite hidden Markov model” when there is
any possibility of confusion.

Generalizing the hidden Markov model construction presented in this chapter uses the same
joint model,

I

p(z1.0,Y1:1 1 0) = p(21) P(yy | 1az1>9>Hp(zi | zi—1,0) Dz, (Y | 1,2;,0).
i=2

In order to marginalize the latent states, however, we have to replace summations with more
general expectations. For example in order to accommodate a real-valued latent state we need
to replace the marginal model

p(ylzl ‘ 0) = Z”'Zp(zl:17ylzf ‘ 0)

with
p(yr|0) = /dzl ~dzy pzrpyrr | 9)-

In this case the forward algorithm becomes

P25 y1. 1 0) = p(y; | 1,24, 0) /dzil p(z; | Z¢7179)p(zi717y1:(i71) | 6)

while the forward-backward algorithm becomes

p(y(i+1):1»| z;,0) = /dziJrl P [+ 1, Zi+1>9)p<y(i+2):17| 2, 0) p(2i41 | 24, 0)

with
p(z; | Y1.1,0) o< p(2;5 Y1 | Q)P(y(iﬂ):f | 2;,0).

The practical implementation of these more general forward and backward algorithms is not
always feasible. In addition to needing all of the integrals to admit analytic solutions we
also need the intermediate conditional probability density functions to all fall into the same
family of probability density functions so that we have to keep track of only finite-dimensional
parameters and not arbitrary, infinite-dimensional functions.

One exceptional circumstance where this implementation is feasible is when the observational
and transition probability density functions are all multivariate normal. In this case each
Pz Y1 | 0), PWatayrs| 2,0), and p(2; | yy.7,0) also become multivariate normal proba-
bility density functions that we can completely characterized with location and covariance

92

parameters. The forward and backward algorithms then reduce to recursive updates of these
parameters.

Even better the recursive updates all become linear operations on these parameters. Conse-
quently this model is known as a linear state space model. Maximum likelihood estimation
of the location parameters is known as a Kalman filter.

Acknowledgements

A very special thanks to everyone supporting me on Patreon: Adam Fleischhacker, Alejandro
Navarro-Martinez, Alessandro Varacca, Alex D, Alexander Noll, Amit, Andrea Serafino, An-
drew Mascioli, Andrew Rouillard, Ara Winter, Ari Holtzman, Austin Rochford, Aviv Keshet,
Avraham Adler, Ben Matthews, Ben Swallow, Benoit Essiambre, boot, Bradley Kolb, Brendan
Galdo, Bryan Chang, Brynjolfur Gauti Jénsson, Cameron Smith, Canaan Breiss, Cat Shark,
Cathy Oliveri, Charles Naylor, Chase Dwelle, Chris Jones, Christina Van Heer, Christopher
Mehrvarzi, Colin Carroll, Colin McAuliffe, Damien Mannion, dan mackinlay, Dan W Joyce,
Dan Waxman, Dan Weitzenfeld, Daniel Edward Marthaler, Daniel Saunders, Danny Van
Nest, Darshan Pandit, Darthmaluus , David Burdelski, David Wurtz, Doug Rivers, Dr. Jobo,
Dr. Omri Har Shemesh, Dylan Maher, Dylan Spielman, Ed Cashin, Edgar Merkle, Eli Wi-
tus, Eric LaMotte, Ero Carrera, Eugene O’Friel, Felipe Gonzéalez, Fergus Chadwick, Finn
Lindgren, Francesco Corona, Geoff Rollins, Granville Matheson, Gregor Gorjanc, Guilherme
Marthe, Hakan Johansson, Hamed Bastan-Hagh, haubur, Hector Munoz, Henri Wallen, hs,
Hugo Botha, Ian, Ian Costley, idontgetoutmuch, Ignacio Vera, Ilaria Prosdocimi, Isaac Vock,
Isidor Belic, jacob pine, Jair Andrade, James C, James Hodgson, James Wade, Janek Berger,
Jarrett Byrnes, Jason Martin, Jason Pekos, Jason Wong, jd, Jeff Burnett, Jeff Dotson, Jeff
Helzner, Jeffrey Erlich, Jerry Lin , Jessica Graves, Joe Sloan, John Flournoy, Jonathan H. Mor-
gan, Jonathon Vallejo, Joran Jongerling, Josh Knecht, Joshua Miller, JU, Julian Lee, June,
Justin Bois, Kadar Andras, Karim Naguib, Karim Osman, Kristian Gardhus Wichmann, Lars
Barquist, lizzie , LOU ODETTE, Luis F, Mads Christian Hansen, Marek Kwiatkowski, Mari-
ana Carmona, Mark Donoghoe, Markus P., Marton Vaitkus, Matthew, Matthew Kay, Matthew
Mulvahill, Matthieu LEROY, Mattia Arsendi, Matéj, Maurits van der Meer, Max, Michael Co-
laresi, Michael DeWitt, Michael Dillon, Michael Lerner, Mick Cooney, Mike Lawrence, Mister-
Mentat, N Sanders, N.S. ; Name, Nathaniel Burbank, Nicholas Clark, Nicholas Cowie, Nick S,
Nikita Karetnikov, Octavio Medina, Ole Rogeberg, Oliver Crook, Olivier Ma, Patrick Kelley,
Patrick Boehnke, Pau Pereira Batlle, Peter Johnson, Pieter van den Berg , ptr, quasar, Ramiro
Barrantes Reynolds, Raul Peralta Lozada, Ravin Kumar, Rémi , Rex, Riccardo Fusaroli,
Richard Nerland, Robert Frost, Robert Goldman, Robert kohn, Robin Taylor, Ryan Gan,
Ryan Grossman, Ryan Kelly, Sean Wilson, Seth Axen, shira, Simon Duane, Simon Lilburn,
Simon Steiger, Simone Sebben, sssz, Stefan Lorenz, Stephen Lienhard, Steve Harris, Steven
Forrest, Stew Watts, Stone Chen, Susan Holmes, Svilup, Tate Tunstall, Tatsuo Okubo, Teresa
Ortiz, Theodore Dasher, Thomas Kealy, Thomas Siegert, Thomas Vladeck, Tobychev , Tony

93

Wuersch, Tyler Burch, Virginia Fisher, Vitalie Spinu, Vladimir Markov, Wil Yegelwel, Will
Farr, Will Lowe, Will Wen, woejozney, yolhaj, yureq, Zach A, and Zhengchen Cai.

References

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York.

Cappé, Olivier, Eric Moulines, and Tobias Rydén. 2005. Inference in Hidden Markov Models.
Springer Series in Statistics. Springer, New York.

Curtis, Charles W. 1993. Linear Algebra. Fourth. Undergraduate Texts in Mathematics.
Springer-Verlag, New York.

Papoulis, Athanasios, and S. Unnikrishna Pillai. 2002. Probability, Random Variables, and
Stochastic Processes. Fourth. McGraw-Hill Book Co.

License

A repository containing all of the files used to generate this chapter is available on GitHub.

The code in this case study is copyrighted by Michael Betancourt and licensed under the new
BSD (3-clause) license:

https://opensource.org/licenses/BSD-3- Clause

The text and figures in this chapter are copyrighted by Michael Betancourt and licensed under
the CC BY-NC 4.0 license:

https://creativecommons.org/licenses/by-nc/4.0/

Original Computing Environment

writeLines(readLines(file.path(Sys.getenv("HOME"), ".R/Makevars")))

CC=clang

CXXFLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macr
CXX=clang++ -arch x86_64 -ftemplate-depth-256

CXX14FLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-ma
CXX14=clang++ -arch x86_64 -ftemplate-depth-256

94

https://github.com/betanalpha/quarto_modeling_techniques/tree/main/hidden_markov_models
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/licenses/by-nc/4.0/

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.7.5

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/1ib/1ibRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/1ibRlapack.dylib;

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] colormap_0.1.4 rstan_2.32.6 StanHeaders_2.32.7

loaded via a namespace (and not attached):

[1] gtable_0.3.4 jsonlite_1.8.8 compiler_4.3.2 Rcpp_1.0.11

[5] parallel_4.3.2 gridExtra_2.3 scales_1.3.0 yaml_2.3.8

[9] fastmap_1.1.1 ggplot2_3.4.4 R6_2.5.1 curl_5.2.0

[13] knitr_1.45 tibble_3.2.1 munsell 0.5.0 pillar_1.9.0
[17] rlang 1.1.2 utf8_1.2.4 V8_4.4.1 inline_0.3.19
[21] xfun_0.41 RcppParallel_5.1.7 cli_3.6.2 magrittr_2.0.3
[25] digest_0.6.33 grid_4.3.2 lifecycle_1.0.4 vectrs _0.6.5

[29] evaluate_0.23 glue_1.6.2 QuickJSR_1.0.8 codetools_0.2-19
[33] stats4_4.3.2 pkgbuild_1.4.3 fansi_1.0.6 colorspace_2.1-0
[37] rmarkdown_2.25 matrixStats_1.2.0 tools_4.3.2 loo_2.6.0

[41] pkgconfig _2.0.3 htmltools_0.5.7

95

Stan
Program 1 simu_data.stan

data {
// Number of latent states
int<lower=1> I;

}

transformed data {
// True model configuration
int<lower=1> K = 3;
array[K] real mu = {-3, 2, 5};
array [K] real<lower=0> sigma = {1.0, 1.5, 0.75};

simplex[K] rho = [0.8, 0.2, 0.0]';
0, 0.30, 0.10 1],

[0.6
[0.40, 0.50, 0.10 1,
[0.05, 0.05, 0.90 1 1;

matrix[K, K] Gamma = [

generated quantities {
array[I] int<lower=1, upper=K> z; // Simulated latent states
array[I] real y; // Simulated observations

// Initial state
z[1] = categorical_rng(rho);
y[1] normal_rng(mulz[1]], sigmalz[1]]);

for (i in 2:I) {
// Following state
vector[K] lambda = Gammal[z[i - 1],]';
z[i] = categorical_rng(lambda) ;

// Observation
y[i] = normal_rng(mulz[il], sigmalz[il]);

96

Stan
Program 2 hmm_log_sum_exp.stan

data {
int<lower=0> K; // Number of component observational models
int<lower=0> I; // Number of latent states
array[I] real y; // Observations of each latent state

}

parameters {
// Component observational model configurations
ordered[K] mu;
array[K] real<lower=0> sigma;

// Latent state dynamics
simplex [K] rho;
array[K] simplex[K] gamma;

}
model {
// Prior model
target += normal_lpdf(mu | O, 10 / 2.32); // -10 <~ mul[k] <~ +10
target += normal_lpdf(sigma | 0, 5 / 2.57); // 0 <~ sigmal[k] <~ 5
target += dirichlet_lpdf(rho | rep_vector(l, K));
for (k in 1:K)
target += dirichlet_lpdf (gammal[k] | rep_vector(l, K));
// Observational model
{
// Construct transition matrix
matrix[K, K] log_Gamma;
for (k in 1:K) log_Gammal[k,] = log(gamma[k]');
// Forward algorithm
vector[K] log_alpha = log(rho);
for (i in 1:1I) {
vector [K] log_alpha_prev = log_alpha;
for (k in 1:K) {
real log_lambda = log_sum_exp(log_Gammal[,k] + log_alpha_prev) ;
log_alphalk] = log_lambda
+ normal_lpdf(y[i] | mulk], sigmalk]);
}
}
97
// Marginal observational model
target += log_sum_exp(log_alpha);
+
}

generated quantities {

Stan
Program 3 hmm_rescaled.stan

data {

int<lower=0> K; // Number of component observational models

int<lower=0> I; // Number of latent states

array[I] real y; // Observations of each latent state

}

parameters {
// Component observational model configurations
ordered[K] mu;
array[K] real<lower=0> sigma;

// Latent state dynamics
simplex[K] rho;
array[K] simplex[K] gamma;

model {
// Prior model

target += normal_lpdf(mu | 0, 10 / 2.32); // -10 <~ mul[k]

<~ +10

target += normal_lpdf(sigma | O, 5 / 2.57); // 0 <~ sigmalk] <~ 5

target += dirichlet_lpdf (rho | rep_vector(l, K));

for (k in 1:K)

target += dirichlet_lpdf (gamma[k] | rep_vector(1l, K));

// Observational model

{
// Construct transition matrix
matrix[K, K] Gamma;
for (k in 1:K) Gammalk,] = gammalk]';

// Forward algorithm
real norm;
real log_norm = 0;

vector [K] alpha = rho;

norm = max(alpha);
log_norm += log(norm) ;
alpha /= norm;

for (i in 1:I) {
vector [K] omega;
for (k in 1:K)

98

omegalk] = exp(normal_lpdf (y[i] | mulk], sigmalk]));

alpha = omega .* (Gamma' * alpha);

norm = max(alpha);

Stan

Program 4 hmm_builtin.stan

data {
int<lower=
int<lower=
array[I] r

}

parameters {
// Compone
ordered [K]

0> K; // Number of component observational models
0> I; // Number of latent states
eal y; // Observations of each latent state

nt observational model configurations
mu;

array[K] real<lower=0> sigma;

// Latent
simplex [K]
array[K] s

model {

state dynamics
rho;
implex [K] gamma;

// Prior model

target +=
target +=

target +=

for (k in

normal_lpdf(mu | 0, 10 / 2.32); // -10 <~ mu[k] <~ +10
normal_lpdf (sigma | 0, 5 / 2.57); // O <~ sigmal[k] <~ 5

dirichlet_lpdf(rho | rep_vector(l, K));

1:X)

target += dirichlet_lpdf (gamma[k] | rep_vector(1l, K));

// Observational model

{

// Construct transition matrix
matrix[K, K] Gamma;
for (k in 1:XK) Gammalk,] = gammalk]';

// Construct component observational model evaluations
matrix[K, I] log_omega;
for (i in 1:1)

for (k in 1:K)

log_

omegalk, i] = normal_ lpdf(y[i] | mulk], sigmalk]);

// Marginal observational model
target += hmm_marginal(log_omega, Gamma, rho);

generated quantities {

99

// Marginal latent state posterior probabilities
array[I] simplex[K] z_prob;

array[I] int z; // Posterior latent states
array[I] real y_pred; // Posterior predictive observations

Stan
Program 5 static_mixure.stan

data {
int<lower=0> K; // Number of component observational models
int<lower=0> I; // Number of latent states
array[I] real y; // Observations at each step

}

parameters {
// Component observational model configurations
ordered[K] mu;
array[K] real<lower=0> sigma;

// Homogeneous mixture probabilities
simplex[K] lambda;

model {
// Prior model
target += normal_lpdf(mu | 0, 10 / 2.32); // -10 <~ mul[k] <~ +10
target += normal_lpdf(sigma | 0, 5 / 2.57); // 0 <~ sigmal[k] <~ 5
target += dirichlet_lpdf(lambda | rep_vector(l, K));

// Observational model
for (n in 1:I) {
array[K] real lpds;
for (k in 1:K) {
lpds[k] = log(lambda[k])
+ normal_lpdf(y[n] | mulk], sigmalk]);
}
target += log_sum_exp(lpds);
}
}

generated quantities {
array[I] real y_pred; // Posterior predictive observations

for (i in 1:I) {
int z = categorical_rng(lambda) ;
y_pred[i] = normal_rng(mulz], sigmalz]);
}
}

100

Stan
Program 6 hmm_builtin_miss.stan

data {
int<lower=0> K; // Number of component observational models
int<lower=0> I; // Number of latent states
int<lower=1, upper=I> N; // Number of observations

array[N] int<lower=1, upper=I> state; // Observed latent states
array[N] real y; // Observations

3

transformed data {
// Surrogate value for unobserved latent states
real miss_val = -25.0;

// Buffer observations with surrogate

// values for unobserved latent states
array[I] real y_buff = rep_array(miss_val, I);
y_buff [state] = y;

// Binary variable indicating whether or

// not each latent state is observed

array[I] int<lower=0, upper=1> obs_flag = rep_array(0, I);
obs_flag[state] = rep_array(l, N);

parameters {
// Component observational model configurations
ordered[K] mu;
array[K] real<lower=0> sigma;

// Latent state dynamics
simplex[K] rho;
array[K] simplex[K] gamma;

model {
// Prior model
target += normal_lpdf(mu | 0, 10 /
target += normal_lpdf(sigma | 0, 5

2.32); // -10 <~ mul[k] <~ +10
/ 2.57); // 0 <~ sigmal[k] <~ 5

target += dirichlet_lpdf(rho | rep_vector(l, K));

for (k in 1:K)
target += dirichlet_lpdf(gamma[k]j&nfep_vector(l, K));

// Observational model

{
// Construct transition matrix
matrix[K, K] Gamma;
for (k in 1:K) Gammalk,] = gammal[k]';

Stan
Program 7 hmm_rescaled_partial.stan

data {
int<lower=0> K; // Number of component observational models
int<lower=0> I; // Number of latent states
int<lower=1, upper=I> N; // Number of observations

array[N] int<lower=1, upper=I> state; // Observed latent states
array[N] real y; // Observations

}

parameters {
// Component observational model configurations
ordered[K] mu;
array[K] real<lower=0> sigma;

// Latent state dynamics
simplex [K] rho;
array[K] simplex[K] gamma;

model {
// Prior model
target += normal_lpdf(mu | 0, 10 / 2.32); // -10 <~ mul[k] <~ +10
target += normal_lpdf(sigma | 0, 5 / 2.57); // O <~ sigmalk] <~ 5

target += dirichlet_lpdf(rho | rep_vector(l, K));

for (k in 1:K)
target += dirichlet_lpdf (gamma[k] | rep_vector(1l, K));

// Observational model

{
// Construct baseline transition matrix
matrix[K, K] Gamma;
for (k in 1:XK) Gammal(k,] = gammalk]';

// Forward algorithm, jumping across any gaps of unobserved
// latent states with a heterogeneous transition matrix
real norm;

real log_norm = O;

vector [K] alpha = rho;
norm = max(alpha) ;

log_norm += log(norm) ;
alpha /= norm;

102

for (n in 1:N) {
vector [K] omega;
for (k in 1:K)
omegalk] = exp(normal_lpdf(y[n] | mulk], sigmalk]));

Stan
Program 8 hmm_analysisl.stan

data {
int<lower=0> I; // Number of latent states
int<lower=0> N; // Number of observations

// All observations
array[N] int<lower=0> y;

// Organization of observations across latent states
array[I] int<lower=0, upper=N> state_N;

array[I] int<lower=1, upper=N> state_start_idx;
array[I] int<lower=1, upper=N> state_end_idx;

transformed data {
int<lower=0> K = 2; // Number of component observational models

}

parameters {
// Component observational model configurations
real<lower=0> lambdal; // Low environmental activity
real<lower=lambdal> lambda2; // High environmental activity

// Hidden state dynamics
simplex[K] rho;

// Low activity to low activity transition probability
real<lower=0, upper=1> taull;

// High activity to high activity transition probability
real<lower=0, upper=1> tau22;

model {
// Prior model
target += normal_lpdf(lambdal | O, 5 / 2.57); // 0 <~ lambdal <~ 5
target += normal_lpdf(lambda2 | 0, 156 / 2.57); // O <~ lambda2 <~ 15

target += dirichlet_lpdf(rho | rep_vector(l, K));

target += beta_lpdf(taull | 1, 1);
target += beta_lpdf(tau22 | 1, 1);

// Observational model
103
{
// Construct transition matrix
matrix[K, K] Gamma
= [[taull, 1 - taull],
[1 - tau22, tau22 11;

// Construct component observational model evaluations

Stan

Program 9 hmm_analysis2.

stan

data {

int<lower=0> I; // Number of latent states
int<lower=0> N; // Number of observations

// All observations

array[N] int<lower=0> y;

// Organization of observations across latent states
array[I] int<lower=0, upper=N> state_N;

array[I] int<lower=1, upper=N> state_start_idx;
array[I] int<lower=1, upper=N> state_end_idx;

transformed data {
int<lower=0> K = 4; //

// zl: Detector status
// z2: Active component

J) %= g @l = i, &2 =
[/ z=2: (z1 =1, 22 =
// z=3: (z1 =2, 22 =
// z=4: (z1 =2, z2 =

parameters {

Number of component observational models

observational model

1) Working detector, low environmental activity
2) Working detector, high environmental activity
1) Broken detector, low environmental activity
2) Broken detector, high environmental activity

// Component observational model configurations
real<lower=0> lambdal; // Low environmental activity
real<lower=lambdal> lambda2; // High environmental activity

// Hidden state dynamics

simplex[K] rho;

// Low activity to low activity transition probability
real<lower=0, upper=1> taull;

// High activity to high activity transition probability
real<lower=0, upper=1> tau22;

// Working detector to working detector transition probability
real<lower=0, upper=1> taud;

model {
// Prior model

104

target += normal_lpdf(lambdal | 0, 5 / 2.57); // O <~ lambdal <~ 5
0

target += normal_lpdf(lambda2 |

, 156 / 2.57); // 0 <~ lambda2 <~ 15

target += dirichlet_lpdf(rho | rep_vector(l, K));

target += beta_lpdf (taull | 1, 1);

	Joint Mixture Observational Models
	The Marginal Hidden Markov Model
	Looking For A Pattern
	Verifying The Pattern
	The Forward Algorithm
	Alternative Conventions

	Inferring Latent State Behavior
	Marginal Posterior Probabilities For Individual Latent States
	Sampling Hidden States

	Robust Implementations of Hidden Markov Models
	Hidden Markov Modeling Techniques
	Modeling The Initial State
	Modeling Multiple Latent Sequences
	Modeling Partially Observed Latent States

	Degeneracies of Hidden Markov Models
	Demonstrations
	Setup
	Comparing and Contrasting Implementations
	Simulate Data
	Exploratory Data Analysis
	Hidden Markov Model Log-Sum-Exp Implementation
	Hidden Markov Model Dynamic Rescaling Implementation
	Hidden Markov Model Built-In Implementation
	Implementation Consistency Check
	Static/Dynamic Mixture Model Comparison

	Modeling Unobserved Latent States
	Hidden Markov Models In Practice
	Exploratory Data Analysis
	Model 1
	Model 2
	Inferential Comparison

	Conclusion
	Appendix: State-Space Models
	Acknowledgements
	References
	License
	Original Computing Environment

