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Most epidemiological analyses are subject to a variety of subtle challenges. For example many
health outcomes are influenced by exposures not only directly but also indirectly; if we cannot
quantify both consistently then we will not be able to make accurate predictions for how health
will vary under the various circumstances of interest. Moreover, because these exposures will
generally vary across the individuals within any given population the corresponding health
outcomes will vary from one population to another.

In this case study we’ll see how Bayesian modeling and inference can be used to manage these
difficulties and extract productive insights.

1 Setup

First and foremost we have to set up the local R environment.

par(family="serif", las=1, bty="1",
cex.axis=1, cex.lab=1, cex.main=1,
xaxs="i", yaxs="i", mar = c(5, 5, 3, 5))

library(rstan)

rstan_options(auto_write = TRUE) # Cache compiled Stan programs
options(mc.cores = parallel::detectCores()) # Parallelize chains
parallel:::setDefaultClusterOptions(setup_strategy = "sequential")

Next we’ll load some utility functions into the local environment to facilitate the implementa-
tion of Bayesian inference.



util <- new.env()

First we have a suite Markov chain Monte Carlo diagnostics and estimation tools; this code
and supporting documentation are both available on GitHub.

source('mcmc_analysis_tools_rstan.R', local=util)

Second we have a suite of probabilistic visualization functions based on Markov chain Monte
Carlo estimation. Again the code and supporting documentation are available on GitHub.

source('mcmc_visualization tools.R', local=util)

2 Data Exploration

For this analysis we will be analyzing fertility across a cohort of male patients. Each patient
was recruited through a referral for fertility preservation consultation and observed for the same
twelve month period. Many of the referrals were also coincident with a cancer diagnosis.

data <- read_rdump("data/conception.data.R")

names (data)

[1] llk_trtll lly" IIK_SthI llk_artll "K_relll "K_trt n "k_toX" IINII ||k_stgll
[10] "k_rel" "K_tox"

The main component of the data is a collection of binary observations indicating whether or
not each patient in the observed cohort conceived a child during a particular year. Specifically
y,, = 0 indicates that the nth patient did not conceive a child while y,, = 1 indicates that they
conceived at least one child.

About two-thirds of the patients conceived a child.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_line_hist(data$y, -0.5, 1.5, 1,
xlab="0bserved Conception Status")


https://github.com/betanalpha/mcmc_diagnostics
https://github.com/betanalpha/mcmc_visualization_tools
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We can also clarify the relative frequencies of these fertility outcomes by normalizing the
summed counts.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_line_hist(data$y, -0.5, 1.5, 1, prob=TRUE,
xlab="0Observed Conception Status")
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These fertility outcomes are complemented by clinical and demographic information about the
individual patients in the cohort (Table 1). Note that these categorical variables are ordered,
with a clear notion of increasing severity. Moreover all of these variables are indexed from 1,
even those with only two values; this is helpful when working with 1-indexed programming
languages like Stan.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_line_hist(data$k_rel, 0.5, data$K_rel + 0.5, 1,
xlab="0bserved Relationship Status")

util$plot_line_hist(data$k_stg, 0.5, data$K_stg + 0.5, 1,
xlab="0Observed Cancer Stage")

util$plot_line_hist(data$k_trt, 0.5, data$K_trt + 0.5, 1,
xlab="0bserved Treatment Status")

util$plot_line_hist(data$k_tox, 0.5, data$K_tox + 0.5, 1,
xlab="0bserved Toxicity Status")
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Finally some of the patients in the observed cohort have taken advantage of assisted repro-
ductive technologies, or ART, which can drastically increase fertility. Similar to the fertility
outcomes, and unlike the clinical and demographic information, ART participation is 0-1
coded, with 0 indicating no participation and 1 participation.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_line_hist(data$k_art, -0.5, 1.5, 1,
xlab="0bserved ART Status")
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Note that these data are not actually real but rather have been simulated from an
epidemiologically-motivated true model for demonstration purposes. Consequently these
observations are a bit more well-behaved than real data tends to be. Moreover there are no

privacy concerns.

3 Model 1

Any epidemiological system is inherently complex. To avoid being overwhelmed by this com-
plexity we’ll start with a relatively simple observational model.

3.1 The Observational Model

Let’s assume that the conception probability is homogeneous across all patients in the observed
cohort,

N N
p1sun L) = [ P | 40) = [ ] Bernoulli(y, | ¢c)-
n=1

n=1 =


https://betanalpha.github.io/assets/case_studies/modeling_and_inference.html#11_the_observational_process

3.2 The Prior Model

To elevate this observational model into a full Bayesian model we need to complement it with
a prior model for the conception probability.

Prior modeling in a demonstration is always tricky because few, if any, readers will share the
same domain expertise. For this analysis let’s just say that the available domain expertise
is inconsistent with conception probabilities below 0.10 and above 0.95; these values are not
outright impossible but much more extreme than the intermediate values. 1 will denote this
soft constraint as

0.10 £ ¢ < 0.95.

Next we have to find a probability distribution over the unit interval that is consistent with
these thresholds. Conveniently the beta family of probability density functions specifies a
diversity of candidate probability distributions over the unit interval.

To select a prior model from these candidates we need to define consistency, although we don’t
have to be too precious. I like to define consistency with tail probability conditions,

0.10

0 =m([0.00,0.10] ) = / dgo beta(qq | «, B)
0.00
1.00
0 =7([0.95,1.00]) = / dgc beta(qo | o, B);
0.95

The precise value of § isn’t too important provided that it is close to zero. I typically take
0 =0.01.

One nice benefit of this definition of consistency is that we can numerically solve for the
parameters a and [ that identify the compatible beta probability density function.

q_low <- 0.1
g_high <- 0.95

stan(file='stan_programs/prior_tune_beta.stan',
data=list('q_low' = g_low, 'gq_high' = q_high),
iter=1, warmup=0, chains=1,
seed=4838282, algorithm="Fixed_param")

alpha = 2.52283
beta = 2.02117

SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
Chain 1: Iteration: 1 / 1 [100%] (Sampling)
Chain 1:


https://betanalpha.github.io/assets/case_studies/modeling_and_inference.html#314_the_complete_bayesian_model
https://betanalpha.github.io/assets/case_studies/prior_modeling.html
https://betanalpha.github.io/assets/case_studies/probability_densities.html#24_the_beta_family

Chain 1: Elapsed Time: O seconds (Warm-up)
Chain 1: 0 seconds (Sampling)
Chain 1: 0 seconds (Total)
Chain 1:

Inference for Stan model: anon_model.
1 chains, each with iter=1; warmup=0; thin=1;
post-warmup draws per chain=1, total post-warmup draws=1.

mean se _mean sd 2.5 25% 50% 75% 97.5% n_eff Rhat

alpha 2.52 NA NA 2.52 2.52 2.52 2.52 2.52 0 NaN
beta 2.02 NA NA 2.02 2.02 2.02 2.02 2.02 0 NaN
1p__ 0.00 NA NA 0.00 0.00 0.00 0.00 0.00 0 NaN

Samples were drawn using (diag_e) at Thu May 29 15:10:15 2025.

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

gs <- seq(0, 1, 0.001)

dens <- dbeta(gs, 2.5, 2.0)

plot(gs, dens, type="1", col=util$c_dark, lwd=2,
xlab="Conception Probability",
ylab="Prior Density", yaxt='n')

q98 <- seq(q_low, g_high, 0.001)
dens <- dbeta(q98, 2.5, 2.0)

q98 <- c(q98, g_high, g_low)
dens <- c(dens, 0, 0)

polygon(q98, dens, col=util$c_dark, border=NA)

abline(v=q_low, 1lwd=3, 1lty=2, col='#DDDDDD')
abline(v=q_high, 1lwd=3, 1lty=2, col='#DDDDDD')
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3.3 Posterior Quantification

Putting everything together we can summarize the structure of the full Bayesian model with
a directed graph (Figure 1) and implement the full Bayesian model in a Stan program.

p(y1,... Yy~ | o)

= Hﬁ;l Bernoulli(y, | q¢)

plac) = beta(qe | 2.5,2.0)

Figure 1: A directed graphical model visually summarizes the narratively generative structure
of our initial model.

With this Stan program we can then run Markov chain Monte Carlo to extract information
about the posterior distribution that can be used to estimate posterior expectation values.

10


https://betanalpha.github.io/assets/case_studies/probability_on_product_spaces.html#4_Directed_Graphical_Models

fit <- stan(file="stan_programs/modell.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Before doing anything else we have to check for any signs that the posterior computation might
be inaccurate. Fortunately there are no diagnostic warnings suggesting any problems.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samplesl <- util$extract_expectand_vals(fit)

base_samples <- util$filter_expectands(samplesi,
c('q_C"))

util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

3.4 Retrodictive Checks
Next we need to evaluate the adequacy of our model by comparing the behavior of the observed
data to the posterior predictive distribution with a posterior retrodictive check.

Here we’ll consider a posterior retrodictive check using the histogram summary statistic that
we that we used when exploring the data. Fortunately there is no sign of tension between the
observed histogram and the probability distribution of posterior predictive histograms.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samplesl, 'y_pred', -0.5, 1.5, 1,

baseline_values=data$y,
xlab="0Observed Conception Status")

11


https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html#143_Posterior_Retrodiction_Checks
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3.5 Posterior Insights

Flush with confidence in our modeling assumptions, at least in the context of the lone summary
statistic we considered, we can examine the resulting posterior inferences.

The posterior distribution concentrates on conception probabilities near 2/3, consistent with
the empirical behavior. One immediate benefit of the Bayesian approach is that the posterior
distribution captures all of the conception probabilities consistent with the observed data,
quantifying uncertainty in our insights.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_expectand_pushforward(samplesi[['q _C']],

25,

display_name="Conception Probability")

12
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When examining inferences for probability parameters it’s often helpful to plot the full range
of possible values and offer as much context as possible.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_expectand_pushforward(samplesi[['q C']],
200, flim=c(0, 1),
display_name="Conception Probability")

13
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4 Model 2

In practice the adequacy of a model is determined by the criteria we use to critique it. Our
initial model adequately captures the aggregate conception behavior across the observed cohort,
but that doesn’t mean it will be able to capture finer details.

For example there’s no reason why patient fertility should not vary across most of the available
clinical and demographic categories. A male patient in a stable relationship with a female
partner is more likely to conceive than one who is not. Similarly more aggressive cancer, and
the ancillary toxicity common to most cancer treatments, is likely to reduce fertility and hence
conception probability.

Fertility should also vary with treatment, but only as a side effect of treatment toxicity. Be-
cause we're modeling treatment toxicity directly we don’t need to consider heterogeneity across
the treatment groups.

The key question for a practical analysis is not whether or not the variations in conception
probability are zero but rather whether or not they are large enough to manifest in the observed
data. Because our initial model assumes homogeneous conception probabilities, the posterior
predictive conception behavior should be the same no matter how we partition the patients.
If the heterogeneity in fertility is strong enough then the observed behaviors will fall outside

14



of the posterior predictive uncertainties, indicating the inadequacy of our initial homogeneous
model.

There are many ways to stratify retrodictive comparisons across categories. Here I'm going to
use the conditional mean summary statistic introduced in Section 2.5 of my Taylor modeling
chapter and implemented in my recommended visualization tools.

par (mfrow=c(1, 3), mar=c(5, 5, 1, 1))
pred_names <- sapply(l:data$N, function(n) pasteO('y_pred[', n, ']'))

util$plot_conditional mean_quantiles(samplesl, pred_names, data$k_rel,
0.5, data$K_rel + 0.5, 1, data$y,
xlab="0bserved Relationship Status",
ylab="Average Conception Status")

util$plot_conditional_mean_quantiles(samplesl, pred_names, data$k_stg,
0.5, data$K_stg + 0.5, 1, data$y,
xlab="0bserved Cancer Stage",
ylab="Average Conception Status")

util$plot_conditional mean_quantiles(samplesl, pred_names, data$k_tox,
0.5, data$k_tox + 0.5, 1, data$y,
xlab="0bserved Toxicity Status",
ylab="Average Conception Status")

15


https://betanalpha.github.io/assets/case_studies/taylor_models.html#25_Posterior_Retrodictive_Checks
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Indeed we see clear disagreement between the observed and posterior predictive behavior. This
indicates that we need to incorporate systematic variation in fertility in order to adequately
model this cohort of patients.

4.1 Observational Model

One of the most productive ways to model variation across a population is to define an inter-
pretable baseline and then model deviations around that baseline. Here we’ll take our baseline
to be the subset of patients in a stable relationship, with no cancer diagnosis, and no treatment
toxicity, and use the parameter qc, to model the baseline conception probability.

An immediate benefit of this choice of baseline is that fertility should always decrease as we
move from the baseline to more extreme patient characteristics. Increasing treatment toxicity,
for instance, should never increase fertility. Consequently we can model the conception prob-
ability in other patient characteristics as proportional decreases from the baseline conception
probability.

More formally for any clinical or demographic grouping we will model the conception proba-
bility in the baseline group as

4=dc, oy
for 6; =1, or equivalently
4= 4qc, exp(—ay)

16



for &y = 0. Then we can model the conception probability in the least extreme group beyond
the baseline as

4= qc, 02

for
0<dy <oy =1,

or equivalently
q4=4qc, exp(—ay)
for
0=o0a; <a,.

Similarly the conception probability in the second least extreme group becomes

q=4qc, 93

for
0<d3<d,<d, =1,

or equivalently
q = qc, exp(—as)

for
O:OZ]_ <Oé2 <043.

I will refer to the «, for each clinical or demographic grouping as impairment parameters.

In order to model the variation across K different groups we need a collection of K positive
and ordered parameters that start at zero.

D=0 <ay <. <o, <..<og.

This multivariate constraint can be tricky to maintain in practice.

Finally we repeat this construction three times to capture the variation in fertility across each
of the three patient characteristics under consideration (Figure 2),

dcn = qCO eXp(_astg,n) eXp(_arcl,n) exp(_atox,n)

= qC'O exp(_astg,n = Qpel,n — atox,n)'

where
astg,n = arel[kstg,n]
arel,n - arel[krel,n]
atox,n = arel[ktox,n]

17



ap, = alky]

Ctox " Qltox,n "

Qlre]

OCrel n ‘—)' qc,n .
’
'
// / qc.n = 4c, exp( Qstg,n
Qstg o astg n " — Qreln

- atox,n)

qo,

Figure 2: We model fertility heterogeneity by allowing conception probability to vary across
cancer stage, relationship status, and treatment toxicity groups. More precisely the
conception probability for each patient g ,, is modeled as a baseline conception prob-
ability qc, coupled with proportional decreases depending on group membership.

18



4.2 Prior Model

In this new model we are no longer modeling a population-wide conception probability but
rather the conception probability for only the baseline group of patients who are in stable
relationships and have not been diagnosed with cancer. If we have additional domain expertise
about this smaller group then we can incorporate it into a more informative prior model.

Here let’s say that our domain expertise is inconsistent with baseline conception probabilities
below 0.5 and above 0.95,
0.50 £ ¢, = 0.95.

q_low <- 0.5
q_high <- 0.95

stan(file='stan_programs/prior_tune_beta.stan',
data=1list('q_low' = q_low, 'q_high' = q_high),
iter=1, warmup=0, chains=1,
seed=4838282, algorithm="Fixed_param")

alpha = 12.6454
beta = 3.74419

SAMPLING FOR MODEL 'anon model' NOW (CHAIN 1).
Chain 1: Iteration: 1 / 1 [100%] (Sampling)
Chain 1:

Chain 1: Elapsed Time: O seconds (Warm-up)
Chain 1: 0 seconds (Sampling)
Chain 1 0 seconds (Total)
Chain 1

Inference for Stan model: anon_model.
1 chains, each with iter=1; warmup=0; thin=1;
post-warmup draws per chain=1, total post-warmup draws=1.

mean se_mean sd 2.5% 25%  50%  75% 97.5) n_eff Rhat

alpha 12.65 NA NA 12.65 12.65 12.65 12.65 12.65 0 NaN
beta 3.74 NA NA 3.74 3.74 3.74 3.74 3.74 0 NaN
1p__ 0.00 NA NA 0.00 0.00 0.00 0.00 0.00 0 NaN

Samples were drawn using (diag_e) at Thu May 29 15:10:23 2025.

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

19



par (mfrow=c(1, 1), mar=c(5, 5, 5, 1))

gs <- seq(0, 1, 0.001)

dens <- dbeta(gs, 12.7, 3.7)

plot(gs, dens, type="1", col=util$c_dark, lwd=2,
xlab="Baseline Conception Probability",
ylab="Prior Density", yaxt='n')

q98 <- seq(q_low, q_high, 0.001)
dens <- dbeta(q98, 12.7, 3.7)
q98 <- c(q98, q_high, q_low)
dens <- c(dens, 0, 0)

polygon(q98, dens, col=util$c_dark, border=NA)

abline(v=q_low, 1wd=3, 1lty=2, col='#DDDDDD')
abline(v=q_high, 1wd=3, 1ty=2, col='#DDDDDD')
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To construct a prior model for these new fertility impairment parameters we need to elicit any
available domain expertise about the reasonable proportional decreases across groups. For
example let’s say that our domain expertise is inconsistent with any decreases below 5%,

00556 < 1.

20



This requires

0.05 5 d 1

0.05 T exp(a) 1
—log(1) £ a I —log(0.05)
0% a I —log(0.05).

We can achieve this prior containment with the half-normal prior model
p(a) = half-normal(« | 0, —1og(0.05)/2.57)

that contains 99% of the prior probability between 0 and — log(0.05).

q_high <- -log(0.05)

par (mfrow=c(1, 1), mar=c(5, 5, 5, 1))

gs <- seq(0, 3.5, 0.001)
dens <- 2 * dnorm(gs, O, q_high / 2.57 )
plot(qs, dens, type="1", col=util$c_dark, lwd=2,
xlab="Conception Impairment",
ylab="Prior Density", yaxt='n')

q98 <- seq(0, q_high, 0.001)

dens <- 2 * dnorm(q98, 0, q_high / 2.57 )
q98 <- c(0, g98, -1og(0.05))

dens <- c(0, dens, 0)

polygon(q98, dens, col=util$c_dark, border=NA)

abline(v=q_high, 1lwd=3, lty=2, col='#DDDDDD')

21
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4.3 Posterior Quantification
The updated observational and prior models snap together into a more elaborate full Bayesian
model (Figure 3).

Note that in the Stan programming language a normal log probability density function is
equivalent to a half-normal log probability density function so long as the input variable is
constrained to be positive. Consequently we can implement half-normal prior models for the
impairment parameters using a normal probability density function.

In order to maintain the assumed constraints on the impairment parameters for each non-
baseline group,

O<ay <. . <o, < ... < ag,

we use the Stan programming language’s positive_ordered variable type. We can then
ensure the assumed constraint for all groups including the baselines,

D=0 <ay <. <o <.. <oy,
by prepending the positive_ordered variable with a zero.
fit <- stan(file="stan_programs/model2.stan",

data=data, seed=8438339,
warmup=1000, iter=2024, refresh=0)

The computational diagnostics don’t suggest any problems with our posterior quantification.

22
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Figure 3: Our second model replaces the homogeneous conception probability parameter from
the first model with the varying outputs of a deterministic function of the clinical
and demographic group memberships of each patient.
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diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples2,
c('q_C_0', 'alpha_rel' ,
'alpha_stg', 'alpha_tox'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

4.4 Retrodictive Checks

The retrodictive performance aggregated across the entire population continues to be strong.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples2, 'y_pred', -0.5, 1.5, 1,

baseline_values=data$y,
xlab="0Observed Conception Status")
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Now, however, the conditional retrodictive checks across the patient characteristics also look
good. This suggests that our model of the variation is adequate, at least for this particular
data set.

par (mfrow=c(1, 3), mar=c(5, 5, 1, 1))
pred_names <- sapply(l:data$N, function(n) pasteO('y_pred[', n, ']'))

util$plot_conditional_mean_quantiles(samples2, pred_names, data$k_rel,
0.5, data$K_rel + 0.5, 1, data$y,
xlab="0bserved Relationship Status",
ylab="Average Conception Status")

util$plot_conditional_mean_quantiles(samples2, pred_names, data$k_stg,
0.5, data$k_stg + 0.5, 1, data$y,
xlab="0bserved Cancer Stage",
ylab="Average Conception Status")

util$plot_conditional _mean_quantiles(samples2, pred_names, data$k_tox,
0.5, data$K_tox + 0.5, 1, data$y,
xlab="0bserved Toxicity Status",
ylab="Average Conception Status")
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4.5 Posterior Insights

The expanded model offers a variety of posterior behaviors to consider. Note that in order to
learn the baseline conception probability, and hence variations away from that baseline, we
needed to have patients who are not diagnosed with cancer in the observed cohort. If such a
cohort is not possible then we would need to inform qc, using a strong prior model informed
by domain expertise, previous studies, or a combination of the two.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_expectand_pushforward(samples2[['q_C_0']],
25,
display_name=paste("Baseline",
"Probability",
"of Conception"))
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Because of their non-linear influence on the patient conception probabilities the impairment
parameters can be tricky to correctly interpret.

par (mfrow=c(1, 3), mar=c(5, 5, 1, 1))

names <- sapply(l:data$K_rel,
function(k) pasteO('alpha_rel buff[', k, ']1'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="0bserved Relationship Status",
ylab="Conception Impairment",
display_ylim=c(-0.05, 1))

names <- sapply(l:data$K_stg,
function(k) pasteO('alpha_stg buff[', k, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="0bserved Cancer Stage",
ylab="Conception Impairment",
display_ylim=c(-0.05, 1))

names <- sapply(l:data$K_tox,
function(k) pasteO('alpha_tox_buff[', k, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="0bserved Toxicity Status",
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ylab="Conception Impairment",
display_ylim=c(-0.05, 1))
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Fortunately we can always propagate our posterior inferences to the more interpretable pro-
portional decreases,

Ve = exp(—ay,).
par (mfrow=c(1, 3), mar=c(5, 5, 1, 1))

names <- sapply(l:data$K_rel,
function(k) pasteO('gamma_rel buff[', k, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="0bserved Relationship Status",
ylab=paste("Proportional",
"Probability Decrease"),
display_ylim=c(0, 1))

names <- sapply(l:data$K_stg,
function(k) pasteO('gamma_stg_buff[', k, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="0bserved Cancer Stage",
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ylab=paste("Proportional",
"Probability Decrease"),
display_ylim=c(0, 1))

names <- sapply(1l:data$k_tox,
function(k) pasteO('gamma_tox_buff[', k, ']'))
util$plot_disc_pushforward_quantiles(samples2, names,
xlab="0bserved Toxicity Status",
ylab=paste("Proportional",
"Probability Decrease"),
display_ylim=c(0, 1))
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5 Model 3

Because all of the patient characteristics in the observed cohort are known we did not have to
model them to infer heterogeneity in fertility within the cohort. If patient characteristics are
prone to missingness or we want to inform behaviors for other patient cohorts, however, then
we need to model the patient characteristics. The latter is particularly important if we want
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to consider hypothetical, sometimes referred to as counterfactual or out-of-sample, cohorts
subject to potential interventions.

5.1 Model 3a

Because consistently modeling all of the patient characteristics at the same time can be chal-
lenging we’ll walk through the process as deliberately as possible.

5.1.1 Patient Characteristic Observational Model

In general the patient characteristics of any population are defined by a joint probability
distribution. For a population of patients characterized by relationship status, cancer stage,
treatment status, and treatment toxicity status this means modeling the joint probability
density function

p(relationship, stage, treatment, toxicity).

Modeling joint probability distributions, and all of the complex couplings between the com-
ponent variables they can manifest, can be overwhelming. One way to make them more
manageable is to decompose them into lower-dimensional conditional probability distributions.
When this decomposition follows the data generating process these conditional probability
distributions become more interpretable and hence more straightforward to model.

For example consider the conditional decomposition (Figure 4)

p(relationship, stage, treatment, toxicity)
= p(toxicity | relationship, stage, treatment)
- p(treatment | relationship, stage)
- p(relationship | stage)
- p(stage).

Treatment toxicity certainly depends on whether or not a patient is undergoing treatment in
the first place. Moreover it can depend on the stage of cancer, with more aggressive cancers
making a patient more vulnerable to treatment side effects. On the other hand treatment
toxicity is not directly influenced by the relationship status of a patient. Consequently the
first conditional probability simplifies to

p(toxicity | relationship, stage, treatment) = p(toxicity | stage, treatment).

In theory treatment status could depend on relationship status; for example a long term
partner might increase the probability of seeking treatment. For this analysis, however, we
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Figure 4: Conditionally decomposing the joint patient characteristic model allows us to focus
on smaller, more interpretable component models.

will assume that treatment within this particular cohort is determined entirely by clinicians
and hence is largely independent of relationship status,

p(treatment | relationship, stage) = p(treatment | stage).

With these simplifications our patient characteristic model becomes (Figure 5)

p(relationship, stage, treatment, toxicity)
= p(toxicity | stage, treatment)
- p(treatment | stage)
- p(relationship | stage)
- p(stage).

Finally some of the conditional probabilities are known precisely. If treatment always follows
a cancer diagnosis then

p(treatment | no cancer) = p(ky = 2 | by, = 1) =0,
or equivalently
p(no treatment | no cancer) = p(ky, = 1| kg, =1) = 1.
Similarly without an active treatment there cannot be any treatment toxicity. Consequently

p(no toxicity | stage, treatment) = p(kyo, = 1 | kg, by = 1) = 1
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Figure 5: Our domain expertise eliminates some of the conditional dependencies, simplifying
this conditionally decomposition of the joint patient characteristic model.

for all stages.

In practice all of the remaining discrete probabilities can be implemented as simplices. For
example p(stage) contains three probabilities, one for each stage, which can be implemented
with a three-component simplex variable

qstg = (qstg:b qstg:2? qstg:3)

with
0 S QStg:k S 1

and
Kstg

Z Gstg—k = L.
k=1

Similarly p(relationship | stage) can be implemented with three, two-component simplex vari-
ables

Qreljstg=1 — (‘bel:l\stg:lv Qrel=2\stg=1)
Qrellstg=2 = (qrelzl\stg:% qrel:Q\stg:Q)

qrel|stg:2 = (qrelzl\stg:?ﬂ qrel:2\stg:3)'

The remaining patient characteristics probabilities have to be inferred from observed data
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using an appropriate categorical observational model (Figure 6),

categorical kstg | qstg)

)
)

Ca‘tegorlcal ktox n ’ Qiox|stg= L kml’n)'

(

Categorlcal(krel n | qrel\stg:kEtg "
categorical(kztrt n | Qirt|stg=Fk

(

stg,n

Atox|trt, stg > ktox,n

krel,n

I
@ ‘

Figure 6: The joint patient model is parameterized by a collection of conditional probabilities,
each of which can be implemented with simplex variable types.

5.1.2 Patient Characteristic Prior Model
The Dirichlet family of probability density functions provides a convenient diversity of proba-

bilistic models over simplices, which in turn is particularly useful for developing a principled
prior model for our patient characteristic model.

For example the Dirichlet probability density function

Dirichlet(gy, -, g | 715> Vi)
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with v, = 1 for all k is uniform over the (K — 1)-simplex. This is useful when we have limited
domain expertise.

On the other hand the Dirichlet model with

Ve = pp/T + 1

concentrates around the baseline probabilities

Py PK

with the value 7 determining the strength of that concentration. These configurations are
useful when our domain expertise is more informative.

The Dirichlet family can also be configured to concentrate on more extreme behaviors. For
example if any of the v, are less than one then the resulting Dirichlet probability density
function will concentrate on at least one simplex boundary.

When the properties of any particular Dirichlet model are not clear from inspecting the gamma
parameters we can always build intuition by studying samples.

library(colormap)

nom_colors <- c("#DCBCBC", "#C79999", "#B97C7C",
"#A25050", "#8F2727", "#7C0000")

line_colors <- colormap(colormap=nom_colors, nshades=25)

plot_simplex_samples <- function(gammas, baseline=FALSE, main="") {
K <- length(gammas)

plot(1, type="n", main=main,
x1lim=c(0.5, K + 0.5), xlab="Component",
ylim=c(0, 1), ylab="Probability")

idxs <- rep(1:K, each=2)
xs <- sapply(l:length(idxs),
function(k) if(k %% 2 == 1) idxs[k] - 0.5
else idxs[k] + 0.5)
for (s in 1:25) {
q <- rgamma(K, gammas, 1)

q <- q / sum(q)

for (k in 1:K) {
idxl <- 2 * k - 1
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idx2 <- 2 *x k
lines(xs[idx1:idx2], rep(qlk], 2), col=line_colors[s], 1lwd=3)
}
}

if (baseline) {

rho <- (gammas - 1)

rho <- rho / sum(rho)

for (k in 1:K) {
idx1l <- 2 *x k - 1
idx2 <- 2 * k
lines(xs[idx1:idx2], rep(rholk], 2), col=util$c_mid_teal, lwd=6)
lines(xs[idx1:idx2], rep(rholk], 2), col=util$c_mid_teal, 1lwd=3)

par (mfrow=c(1, 1), mar=c(5, 5, 5, 1))

plot_simplex_samples(c(5, 7, 8, 3, 9, 5), baseline=TRUE)
1.0
0.8
0.6

0.4

Probability

0.2

Component

What do we know about the cohort?

Because patients were included only from referrals for fertility preservation consultation, pa-
tients with cancer diagnoses should not dominate. The more domain expertise we have about



referral rates the more precisely we can tune an appropriate prior model; here we will assume
a weak concentration towards no cancer diagnosis,

(32

_7_70
Vstg:%)—i_l:(éla?’vl)'

[

par (mfrow=c(1, 1), mar=c(5, 5, 5, 1))

plot_simplex_samples(c(4, 3, 1), baseline=TRUE, main="Cancer Stage")
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In general relationships are strained more and more as cancer progresses to more advanced
stages, although here we don’t have too much a priori understanding of just how much,

(1,0)

’yrel|stg=1 =1
3

(1,0)

’yre1|stg=2 = 1

7re1|stg:3 = (1’ 1) :

+1=(4,1),

+1=(2,1),

par (mfrow=c(1, 3), mar=c(5, 5, 5, 1))

plot_simplex_samples(c(4, 1), baseline=TRUE,
main="Relationship Status\nNo Cancer Diagnosis")
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plot_simplex_samples(c(2, 1), baseline=TRUE,
main="Relationship Status\nEarly Stage Cancer")

plot_simplex_samples(c(1l, 1), baseline=FALSE,
main="Relationship Status\nAdvanced Stage Cancer")
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Similarly we expect that treatment becomes more likely as cancer progresses,

par (mfrow=c(1, 2), mar=c(5, 5, 5, 1))

plot_simplex_samples(c(1l, 3), baseline=TRUE,
main="Relationship Status\nEarly Stage Cancer")

plot_simplex_samples(c(0.5, 4), baseline=FALSE,
main="Relationship Status\nAdvanced Stage Cancer")
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Finally toxicity should increase with cancer stage, but only if a patient is being actively
treated,
321
6’6 770
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5

par (mfrow=c(1, 1), mar=c(5, 5, 5, 1))
title <- "Relationship Status\nNo Cancer Diagnosis, No Treatment"

plot_simplex_samples(c(4, 3, 2, 1), baseline=TRUE,
main=title)

38



Relationship Status
No Cancer Diagnosis, No Treatment

1.0 —

0.8 —

0.6 —

Probability

Component

par (mfrow=c(1, 1), mar=c(5, 5, 5, 1))

title <- "Relationship Status\nEarly Stage Cancer, Active Treatment"
plot_simplex_samples(c(2, 3, 3, 1), baseline=TRUE,
main=title)
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par (mfrow=c(1, 1), mar=c(5, 5, 5, 1))
title <- "Relationship Status\nAdvanced Stage Cancer, Active Treatment"

plot_simplex_samples(c(l, 2, 3, 3), baseline=FALSE,
main=title)
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Overall the full prior model is relatively diffuse, but it does suppress the more unrealistic
patient characteristics.

5.1.3 Posterior Quantification

If the fertility heterogeneity is independent of how the patient characteristic groups are popu-
lated then our previous model and new patient characteristic model simply compose together
(Figure 7). This is by no means a trivial assumption in practice. For example it would be vio-
lated if referrals into the observed cohort favored patients who suffered from fertility issues.
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Figure 7: When fertility is independent of how the cohort was selected we can simply compose
a patient fertility model with a patient characteristic model.
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All of these patient characteristic probabilities can be conveniently implemented with the
simplex variable types in Stan. The only challenge is organizing all of the simplices effec-
tively.

Also note that when we generate posterior predictive simulations in the generated
quantities block we simulate new patient characteristics as well as new fertility outcomes.

data$N_pred <- 5000

fit <- stan(file="stan_programs/model3a.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Although our model is quickly increasing in complexity the computational diagnostics suggest
that our posterior computation is keeping up.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples3a <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples3a,
c('q_stg', 'q_trt_active_stg',
'q_tox_active_trt','q_C_0',
'alpha_rel', 'alpha_stg',
'alpha_tox'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

5.1.4 Retrodictive Checks

Posterior retrodictive checks for the patient characteristics all look good, suggesting that the
assumptions underlying our patient characteristic model is adequately capturing the details of
the observed data.
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par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples3a, 'k_rel_pred',
0.5, data$K_rel + 0.5, 1,
baseline values=data$k_rel,
xlab="Relationship Status")

util$plot_hist_quantiles(samples3a, 'k_stg_pred',
0.5, data$K_stg + 0.5, 1,
baseline_values=data$k_stg,
xlab="Cancer Stage")

util$plot_hist_quantiles(samples3a, 'k_trt_pred',
0.5, data$k_trt + 0.5, 1,
baseline_values=data$k_trt,
xlab="Treatment Status")

util$plot_hist_quantiles(samples3a, 'k_tox_pred',
0.5, data$K_tox + 0.5, 1,
baseline_values=data$k_tox,
xlab="Toxicity Status")
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Moreover the observed conception status is consistent with the full posterior predictive concep-
tion status, where we consider variation in the clinical, demographic, and fertility behaviors.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samples3a, 'y_pred', -0.5, 1.5, 1,

baseline_values=data$y,
xlab="0Observed Conception Status")
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Note that we cannot consider conditional retrodictive checks here as we did previously because
the observed data and posterior predictions are now based on different realizations of the
patient characteristic variables.

5.1.5 Posterior Insights

Content with the adequacy of our model we can examine the patient characteristic inferences
one by one. About half of the observed cohort suffers from cancer.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

names <- sapply(l:data$K_stg,
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function(k) pasteO('q_stgl[', k, '1'))
util$plot_disc_pushforward_quantiles(samples3a, names,
xlab="0bserved Cancer Stage",
ylab="Probability",
display_ylim=c(0, 1))
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Stable relationships become less common as cancer progresses.
par (mfrow=c(1, 3), mar=c(5, 5, 1, 1))

for (ks in 1:data$K_stg) {
names <- sapply(1l:data$K_rel,
function(k) pasteO('q_rell', ks, ',', k, ']1"))

util$plot_disc_pushforward_quantiles(samples3a, names,
xlab="0bserved Relationship Status",
ylab="Probability",
display_ylim=c(0, 1),
main=paste("Cancer Stage ", ks))
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Conversely treatment becomes more common as cancer progresses.

par (mfrow=c(1, 3), mar=c(5, 5, 1, 1))

for (ks in 1:data$K_stg) {
names <- sapply(l:data$K_trt,

function(k) pasteO('q_trt[', ks, ',', k, '1"))

util$plot_disc_pushforward_quantiles(samples3a, names,

xlab="0bserved Treatment Status",
ylab="Probability",
display_ylim=c(0, 1),
main=paste("Cancer Stage ", ks))
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Treatment toxicity becomes more severe as cancer progresses, at least for patients actively
undergoing treatment.

par (mfrow=c(2, 3), mar=c(5, 5, 1, 1))

for (kt in 1:data$K_trt) {
for (ks in 1:data$K_stg) {
names <- sapply(l:data$K_tox,
function(k) pasteO('q_tox[', ks, ',', kt, ',', k, ']1'))

util$plot_disc_pushforward_quantiles(samples3a, names,
xlab="0bserved Toxicity Status",
ylab="Probability",
display_ylim=c(0, 1),
main=paste("Cancer Stage ", ks,

", Treatment ", kt))
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Note that k_stg = 1 and k_trt = 2 corresponds to cancer treatment without a cancer diag-
nosis, which is not possible in this scenario. Consequently we have no observations with these
particular patient characteristics, and the corresponding toxicity probabilities are informed by
only the prior model. This is why these inferences exhibit the largest uncertainties.

In order to quantify the effect of potential interventions we need to compare the fertility of
the entire observed cohort to some new, hypothetical cohort. This is straightforward when
fertility in both cohorts behaves homogeneously across patients but substantially more subtle
when patient fertility is heterogeneous. In the heterogeneous case we to reduce the population
behavior into a summary amenable to direct comparison.

For example we might summarize the cohort population behavior with a probability distri-
bution of histograms. This summary convolves the variation in behavior across individual
patients and the inferential uncertainties of those behaviors together into a single probabilistic

prediction.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples3a, 'q_pred', -0.05, 1.05, 0.1,
xlab="Conception Probability")
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Notice the peak at high conception probabilities here; this is due to the baseline individuals in
the population. If useful we can always stratify these histograms to isolate particular patient
sub-populations of interest, such as the baseline patients.

Another approach is to reduce the entire population to a scalar summary and then visualize
the posterior predictive distribution of that summary.

For instance we might consider ensemble, or population, average of the individual patient

fertilities,
D9
AT qc,'rn
N n=

and then analyze the posterior distribution of (¢). This is particularly useful for emphasizing
the centrality of the population.

var_repl <- list('p'=util$name_array('q_pred', c(data$N_pred)))
pop_ave_samples <-
util$eval_expectand_pushforward(samples3a,
function(p) mean(p),

var_repl)

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
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name <- "Conception Probability\nPopulation Average"

util$plot_expectand_pushforward(pop_ave_samples,
150, flim=c(0, 1),
display_name=name)

Estimated Bin
Probabilities / Bin Width

0.0 0.2 0.4 0.6 0.8 1.C
Conception Probability
Population Average

In cases where we are more interested in extremes of the population we might consider ensem-
ble/population quantiles such as the lower quartile @ defined implicitly as

SN Q> o)

~ 0.25.
N

var_repl <- list('p'=util$name_array('q_pred', c(data$N_pred)))

pop_quant_samples <-
util$eval_expectand_pushforward(samples3a,
function(p) quantile(p, prob=c(0.25)),

var_repl)

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

name <- "Conception Probability\nPopulation Lower Quartile"
util$plot_expectand_pushforward(pop_quant_samples,
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150, flim=c(0, 1),
display_name=name)

Estimated Bin
Probabilities / Bin Width

\

0.0 0.2 0.4 0.6 0.8 1.C
Conception Probability
Population Lower Quartile

5.2 Model 3b

Now that we’ve modeled the patient characteristic of the observed cohort we can consider what
behaviors might manifest in other, hypothetical populations of practical interest.

For example what would happen to the population fertility with the introduction of a new,
less toxic treatment? Because none of the other patient characteristics depend on toxicity we
can model this intervention by changing only Qyoyjers, ste-

q_tox_hyp <- list(c(0, 0.69, 0.30, 0.01),
c(0, 0.35, 0.55, 0.20) )

par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))
kt <- 2
for (ks in 2:data$K_stg) {

names <- sapply(1l:data$K_tox,
function(k) pasteO('q tox[', ks, ',', kt, ',', k, '1"))
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util$plot_disc_pushforward_quantiles(samples3a, names,
xlab="0bserved Toxicity Status",
ylab="Probability",
display_ylim=c(0, 1),
main=paste("Observed\n",
"Cancer Stage ", ks,
" Treatment ", kt))

plot (0, type='n',
main=paste ("Hypothetical\n",
"Cancer Stage ", ks,
", Treatment ", kt),
x1im=c (0.5, data$k_tox + 0.5),
xlab="0bserved Toxicity Status",
ylim=c(0, 1), ylab="Probability")
for (k in 1:data$K_tox) {
lines(c(k - 0.5, k + 0.5),
rep(q_tox_hypl[lks - 11]1[k], 2),
lwd=2, col=util$c_mid_teal)

Probability

Observed Toxicity Stal

}
Observed Hypothetical
Cancer Stage 2, Treatm Cancer Stage 2, Treatm
> 1.0 > 1.0
= 08 = 0.8
B0 — 3] T
£ 02 £ 02
00 =77 0.0 =777
1 2 3 4 1 2 3 4

Observed Toxicity Stal

Observed Hypothetical
Cancer Stage 3, Treatm Cancer Stage 3, Treatm
1.0 > 1.0
0.8 = 08
0.6 J— g 06 —_
0.4 —_— 2 04 —_—
0.2 - g 02 _—
0.0 0.0 R —

T T 1
1 2 3 4

Observed Toxicity Stal

Observed Toxicity Stal
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Because we have embraced the probabilistic glory of Bayesian inference there’s no reason why
we have to be limited to point hypotheticals. We can also use a probability distribution to
quantify uncertainty in the potential behaviors instead of having to rely on precise values.

tau_hyp <- 0.01

alpha_tox_hyp <- list()
for (k in 1:2) {

alpha_tox_hyp[[k]] <- g_tox_hyp[[k]] / tau_hyp + rep(l, data$K_tox)
}

S <- 1000
samples_hyp <- list()

for (ks in 2:data$k_stg) {
for (k in 1:data$K_tox) {
name <- pasteO('q_tox[', ks, ',', k, ']")
samples_hyp[[name]] <- matrix(0, nrow=1, ncol=S)
}
for (s in 1:8) {
q <- rgamma(data$K_tox, alpha_tox_hyp[lks - 111, 1)
q <- q / sum(q)
for (k in 1:data$K_tox) {
name <- pasteO('q_tox[', ks, ',', k, ']")
samples_hyp[[name]] [1, s] <- qlk]
}
}

par (mfrow=c(2, 2), mar=c(5, 5, 3, 1))

kt <- 2
for (ks in 2:data$K_stg) {
names <- sapply(1l:data$k_tox,
function(k) pasteO('q tox[', ks, ',', kt, ',', k, '1"))
util$plot_disc_pushforward_quantiles(samples3a, names,
xlab="0bserved Toxicity Status",
ylab="Probability",
display_ylim=c(0, 1),
main=paste("Observed\n",
"Cancer Stage ", ks,
", Treatment ", kt))
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names <- sapply(1l:data$k_tox,

function(k) pasteO('q_tox[', ks,

Sk, 1))

util$plot_disc_pushforward_quantiles(samples_hyp, names,
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Probability

Probability

xlab="0bserved Toxicity Status",

ylab="Probability",

display_ylim=c(0, 1),

main=paste ("Hypothetical\n",
"Cancer Stage ", ks,
", Treatment ", kt))
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To propagate these changes forward to updated conception inferences we just need to run the
previous model with a modified generated quantities block implementing the new inferen-
tial quantities.

data$alpha_tox_hypl <- q_tox_hyp[[1]]
data$alpha_tox_hyp2 <- q_tox_hyp[[2]]

fit <- stan(file="stan_programs/model3b.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)
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The changes to the generated quantities block do alter how pseudo-random numbers are
used by Stan. This, in turn, can affect the stochastic posterior computation. Consequently we
have to double check the computational diagnostics to ensure that no new issues have arisen.
Fortunately everything still looks okay.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples3b <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples3b,
c('q_stg', 'q_trt_active_stg',
'q_tox_active_trt','q_C_0',
'alpha_rel', 'alpha_stg',
'alpha_tox'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Because the model and data are the same the retrodictive checks will all be equivalent, and we
can jump directly to analyzing the posterior inferences. In particular comparing inferences for
the population summaries from the observed and hypothetical cohorts allows us to quantify
the efficacy of the new treatment.

The behavior of the baseline sub-population remains the same, but the rest of the population
shifts to higher conception probabilities after the hypothetical intervention. This makes sense
given that the baseline patients are not undergoing treatments and hence are not influenced
by any changes in those treatments.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples3b, 'q_pred', -0.05, 1.05, 0.1,
xlab="Conception Probability",
main="0bserved Cohort")

util$plot_hist_quantiles(samples3b, 'q_hyp_pred', -0.05, 1.05, 0.1,

xlab="Conception Probability",
main="Hypothetical Cohort")

55



Observed Cohor Hypothetical Cohc

2500 — I 2500 — I
2000 — 2000 —
" 8
S 1500 S 1500
@] @]
@) o
1000 — 1000 —
500 — -I.'I 500 — K |
O 7171717177 O 1717171717
0.0 0.6 0.0 0.6
Conception Probal Conception Probal

Reducing the two cohorts to average conception probabilities demonstrates the benefit of the
new treatment more clearly.

var_repl <- list('p'=util$name_array('q_pred', c(data$N_pred)))
pop_ave_samples <-
util$eval_expectand_pushforward(samples3b,
function(p) mean(p),
var_repl)

var_repl <- list('p'=util$name_array('q_hyp_pred', c(data$N_pred)))
hyp_pop_ave_samples <-
util$eval _expectand_pushforward(samples3b,
function(p) mean(p),
var_repl)

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

name <- "Conception Probability\nPopulation Average"
util$plot_expectand_pushforward(pop_ave_samples,
25, flim=c(0.6, 0.72),
display_name=name,
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col=util$c_light)
text(0.62, 40, "Observed\nCohort", col=util$c_light)

util$plot_expectand_pushforward (hyp_pop_ave_samples,
25, flim=c(0.6, 0.72),
border="#BBBBBB88",
add=TRUE)

text(0.69, 20, "Hypotheticall\nCohort", col=util$c_dark)

Hypothetical
Cohort

Estimated Bin
Probabilities / Bin Width

0.60 0.62 0.64 0.66 0.68 0.70 0.7Z
Conception Probability
Population Average

We can even directly calculate the posterior probability that the average conception probability
is higher in the hypothetical cohort.

ave_samples <- list("obs"

pop_ave_samples,

"hyp" = hyp_pop_ave_samples)
p_est <-

util$implicit_subset_prob(ave_samples,
function(obs, hyp) hyp > obs)

format_string <- paste("Posterior probability that hypothetical",
"population average\nis greater than observed",
"population average = %.3f +/- %.3f.")
cat(sprintf (format_string, p_est[1], 2 * p_est[2]))
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Posterior probability that hypothetical population average
is greater than observed population average = 0.787 +/- 0.013.

Interestingly the lower quantile summary exhibits a smaller benefit to the new treatment. This
suggests that improvements to the lowest fertility patients are weaker than improvements to
the population as a whole.

var_repl <- list('p'=util$name_array('q_pred', c(data$N_pred)))
pop_quant_samples <-
util$eval_expectand_pushforward(samples3b,
function(p) quantile(p, prob=c(0.25)),
var_repl)

var_repl <- list('p'=util$name_array('q_hyp_pred', c(data$N_pred)))
hyp_pop_quant_samples <-
util$eval _expectand_pushforward(samples3b,
function(p) quantile(p, prob=c(0.25)),
var_repl)

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

name <- "Conception Probability\nPopulation Lower Quantile"
util$plot_expectand_pushforward(pop_quant_samples,
25, flim=c(0.3, 0.8),
display_name=name,
col=util$c_light)
text(0.45, 5, "Observed\nCohort", col=util$c_light)

util$plot_expectand_pushforward(hyp_pop_quant_samples,
25, flim=c(0.3, 0.8),
border="#BBBBBB88",
add=TRUE)

text(0.675, 5, "Hypothetical\nCohort", col=util$c_dark)
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quant_samples <- list("obs" = pop_quant_samples,
"hyp" = hyp_pop_quant_samples)
p_est <-
util$implicit_subset_prob(quant_samples,
function(obs, hyp) hyp > obs)

format_string <- paste("Posterior probability that hypothetical",
"population lower quantile\nis greater than",
"observed population lower quantile",
"= %.3f +/- %.3f.")

cat(sprintf (format_string, p_est[1], 2 * p_est[2]))

Posterior probability that hypothetical population lower quantile
is greater than observed population lower quantile = 0.570 +/- 0.015.

6 Model 4

At this point we have done some pretty cool Bayesian modeling and inference, but we have yet
to consider ART. This is concerning given that ART can drastically increase fertility regardless
of the direct and indirect cancer effects.
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Unfortunately the posterior predictive conception behavior of our previous model very poorly
matches the observed conception behavior once we take ART into account. Model critique is
always fundamentally limited by the criteria we consider!

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

pred_names <- sapply(l:data$N, function(n) pasteO('y_pred[', n, ']'))

util$plot_conditional mean_quantiles(samples2, pred_names, data$k_art,
-0.5, 1.5, 1, data$y,

xlab="0bserved ART Status",
ylab="Average Conception Status")
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Upon reflection this discrepancy isn’t too surprising. The higher fertility of ART patients will
bias the overall fertility of the observed cohort to larger values than what we would see from
patients attempting natural conception alone.

6.1 Model 4a

In order to make faithful inferences for both the observed cohort and any hypothetical cohorts
we need to account for ART by quantifying the conception probability of ART and non-ART
patients separately.
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6.1.1 ART Observational Model

Patients who have not undergone ART can be modeled as we did in the previous model, with
the baseline probability of conceptual now more precisely interpreted as the baseline probability
of natural conception. The challenge with modeling ART patients is that successful conceptions
could be a result of either natural or ART methods but we do not know which. Consequently
we have to take into account the potential success of both methods of conception at the same
time.

ART conception and natural conception are likely to be coupled at some level. For example
patients in stable, monogamous relations with female partners are unlikely to attempt one
method after conception is achieved with the other. In theory we could attempt to model
these competing events, but here we will make a simpler assumption that the two methods
of conception are approximately independent so that an observed conception is given by a
success with either method or both.

Given this assumption there are a few ways to calculate the overall conception probability for
a given patient.

One way is to recognize that the probability of no conception is equal to the probability of
both methods failing to conceive,
p(no conception) = p(no conception)
1 — p(conception) = p(no natural conception)
-p(no ART conception)
1 — p(conception) = (1 — p(natural conception))
- (1 — p(ART conception))
p(conception) =  p(ART conception) (1 — p(natural conception))

+ p(natural conception).

Another way is to decompose the probability of conception into conditional probabilities,

p(conception) =  p(conception | No natural conception)
- p(No natural conception)
+ p(conception | natural conception)
- p(natural conception)
p(conception) =  p(ART conception)
- (1 — p(natural conception))
+ 1
- p(natural conception)
p(conception) = p(ART conception) (1 — p(natural conception))

+ p(natural conception).
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The probability of natural conception p(natural conception) for an individual patient is given
by the previous model,

dncn = qNCO eXp(_astg,n = Qpelp — atox,n)'

In general p(ART conception) can also vary across the various patient categories, but here will
assume that it is at least approximately homogeneous so that it can be modeled with a single
parameter g ..

6.1.2 ART Prior Model

In our previous elicitation of reasonable behaviors for the baseline conception probability we did
not explicitly consider ART. Consequently our previous prior model for 4c, is now somewhat
ambiguous.

If we were implicitly considering domain expertise for natural conception then we can apply
the same prior model to anc,- On the other hand if we were implicitly considering domain
expertise for any method of conception then we would need to update the prior model to
incorporate any information we have about natural conception in particular. Here we will
assume the former and use the same prior model for gy, as we did for g, .

This leaves a prior model for g,.. Here let’s say that our clinical domain expertise disfavors
ART conception probabilities below 0.4 and above 0.8.

q_low <- 0.4
g_high <- 0.8

stan(file='stan_programs/prior_tune_beta.stan',
data=list('q_low' = q_low, 'q_high' = g_high),
iter=1, warmup=0, chains=1,
seed=4838282, algorithm="Fixed_param")

alpha = 18.2301
beta = 11.6206

SAMPLING FOR MODEL 'anon model' NOW (CHAIN 1).
Chain 1: Iteration: 1 / 1 [100%] (Sampling)
Chain 1:

Chain 1: Elapsed Time: O seconds (Warm-up)
Chain 1: 0 seconds (Sampling)
Chain 1 0 seconds (Total)
Chain 1
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Inference for Stan model: anon_model.
1 chains, each with iter=1; warmup=0; thin=1;
post-warmup draws per chain=1, total post-warmup draws=1.

mean se_mean sd 2.5% 25%  50%  75% 97.5% n_eff Rhat

alpha 18.23 NA NA 18.23 18.23 18.23 18.23 18.23 0 NaN
beta 11.62 NA NA 11.62 11.62 11.62 11.62 11.62 0 NaN
1p__ 0.00 NA NA 0.00 0.00 0.00 0.00 0.00 0 NaN

Samples were drawn using (diag_e) at Thu May 29 15:10:51 2025.

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

par (mfrow=c(1, 1), mar=c(5, 5, 3, 1))

gs <- seq(0, 1, 0.001)

dens <- dbeta(qs, 18.2, 11.6)

plot(gs, dens, type="1", col=util$c_dark, lwd=2,
xlab="Conception Probability",
ylab="Prior Density", yaxt='n')

q98 <- seq(q_low, g_high, 0.001)
dens <- dbeta(q98, 18.2, 11.6)
98 <- c(q98, q_high, q_low)
dens <- c(dens, 0, 0)

polygon(q98, dens, col=util$c_dark, border=NA)

abline(v=q_low, 1lwd=3, 1lty=2, col='#DDDDDD')
abline(v=q_high, 1lwd=3, 1ty=2, col='#DDDDDD')
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6.1.3 Posterior Quantification

Incorporating ART results in an expanded model that exhausts all of the features of the
observed data (Figure 8).

In order to apply all of the retrodictive checks that have previously considered we will need
to simulate posterior predictive patient characteristics but then simulate posterior predictive
conception statuses from the observed patient characteristics and not the newly simulated
ones.

fit <- stan(file="stan_programs/model4a.stan",

data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

The posterior computation continues to prove robust.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.
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Figure 8: Our final model takes into account the influence of assisted reproduction technologies
on patient conception.
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samples4a <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samplesda,
c('qg_stg', 'q_trt_active_stg',
'q_tox_active_trt','q_NC_0',
'alpha_rel', 'alpha_stg',
'alpha_tox', 'q_AC'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

6.1.4 Retrodictive Checks

With all of the checks we have introduced at this point we have to be careful to go through
the retrodictive behavior of each summary one by one.

First we’ll see how well the model recovers the patient characteristic behavior. Fortunately
there are no signs of problems.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samples4a, 'k_rel_pred',
0.5, data$K _rel + 0.5, 1,
baseline values=data$k_rel,
xlab="Relationship Status")

util$plot_hist_quantiles(samplesda, 'k_stg_pred',
0.5, data$K_stg + 0.5, 1,
baseline_values=data$k_stg,
xlab="Cancer Stage")

util$plot_hist_quantiles(sampleséda, 'k_trt_pred',
0.5, data$K_trt + 0.5, 1,
baseline values=data$k_trt,
xlab="Treatment Status")

util$plot_hist_quantiles(samplesd4a, 'k_tox_pred',
0.5, data$K_tox + 0.5, 1,
baseline_values=data$k_tox,
xlab="Toxicity Status")
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Next we have the posterior retrodictive check sensitive to the aggregate conception behavior.
Again all looks good.

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
util$plot_hist_quantiles(samplesd4a, 'y_pred', -0.5, 1.5, 1,

baseline_values=data$y,
xlab="0Observed Conception Status")
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Finally we can compare the observed and posterior predictive conception behavior stratified
by all of the clinical and demographic categories, including the use of ART. Looks like this
expanded model has resolved the retrodictive tension of the previous model.

par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))
pred_names <- sapply(l:data$N, function(n) pasteO('y_pred[', n, ']'))

util$plot_conditional _mean_quantiles(samples4a, pred_names, data$k_rel,
0.5, data$K_rel + 0.5, 1, data$y,
xlab="0bserved Relationship Status",
ylab="Average Conception Status")

util$plot_conditional_mean_quantiles(samples4a, pred_names, data$k_stg,
0.5, data$k_stg + 0.5, 1, data$y,
xlab="0bserved Cancer Stage",
ylab="Average Conception Status")
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par (mfrow=c(2, 1), mar=c(5, 5, 1, 1))

util$plot_conditional mean_quantiles(samplesda, pred_names, data$k_tox,
0.5, data$K_tox + 0.5, 1, data$y,
xlab="0bserved Toxicity Status",
ylab="Average Conception Status")

util$plot_conditional mean_quantiles(samplesda, pred_names, data$k_art,
-0.5, 1.5, 1, data$y,
xlab="0bserved ART Status",
ylab="Average Conception Status")
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6.1.5 Posterior Insights

We can analyze the posterior inferences from this new model directly.
par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

name <- "Probability of ART Conception"

util$plot_expectand_pushforward(samples4al['q_AC']], 25,
display_name=name)
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That said we can better understand the impact of explicitly modeling ART by comparing
the posterior inferences from this new model to those of our last model that did not consider
ART.

Inferences for the baseline conception probability are similar, but the inferences for the fertility
impairment parameters change substantially. The previous model had to contort itself to fit
the observed data as well as possible, resulting in misleading inferences and predictions that
will not generalize well to other cohorts.

par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))

name <- "Baseline Probability of Conception"

util$plot_expectand_pushforward(samples3al[['q_C_0'l],
25, flim=c(0.75, 0.85),
display_name=name,
main="Not Modeling ART")

name <- "Baseline Probability of Natural Conception"

util$plot_expectand_pushforward(samplesd4al['q_NC_0'l],
26, flim=c(0.75, 0.85),
display_name=name,
main="Modeling ART")
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names <- sapply(l:data$k_rel,
function(k) pasteO('alpha_rel_buff[', k, ']'))
util$plot_disc_pushforward_quantiles(samples3a, names,
xlab="0bserved Relationship Status",
ylab="Conception Impairment",
display_ylim=c(-0.05, 2.5))

names <- sapply(l:data$K_rel,
function(k) pasteO('alpha_rel buff[', k, ']'))
util$plot_disc_pushforward_quantiles(samples4a, names,
xlab="0bserved Relationship Status",
ylab="Conception Impairment",
display_ylim=c(-0.05, 2.5))
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par (mfrow=c(2, 2), mar=c(5, 5, 1, 1))
names <- sapply(l:data$k_stg,
function(k) pasteO('alpha_stg buff[', k, ']1'))
util$plot_disc_pushforward_quantiles(samples3a, names,
xlab="0bserved Cancer Stage",
ylab="Conception Impairment",
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display_ylim=c(-0.05, 1.5),
main="Not Modeling ART")

names <- sapply(l:data$K_stg,
function(k) pasteO('alpha_stg_buffl[', k, ']1'))
util$plot_disc_pushforward_quantiles(samples4a, names,
xlab="0bserved Cancer Stage",
ylab="Conception Impairment",
display_ylim=c(-0.05, 1.5),
main="Modeling ART")

names <- sapply(l:data$k_tox,
function(k) pasteO('alpha_tox_buff[', k, ']'))
util$plot_disc_pushforward_quantiles(samples3a, names,
xlab="0bserved Toxicity Status",
ylab="Conception Impairment",
display_ylim=c(-0.05, 2.5))

names <- sapply(l:data$K_tox,
function(k) pasteO('alpha_tox_buff[', k, ']1'))
util$plot_disc_pushforward_quantiles(samples4a, names,
xlab="0bserved Toxicity Status",
ylab="Conception Impairment",
display_ylim=c(-0.05, 2.5))
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6.2 Model 4b

With a model that can distinguish between natural and ART conceptions we can make much
more accurate inferences for the hypothetical treatment that we considered above. Here we’ll
assume that the main epidemiology focus is the difference in only natural conceptions. In this
case the ART conceptions in the observed data are something of a contamination that we need
to model in order to isolate the desired behavior.

fit <- stan(file="stan_programs/model4b.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

One last check of the computational diagnostics; one more breath of appreciation for the
robustness and scalability of Hamiltonian Monte Carlo.

diagnostics <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics)

A1l Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.
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samples4b <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samplesdb,
c('qg_stg', 'q_trt_active_stg',
'q_tox_active_trt','q_NC_0',
'alpha_rel', 'alpha_stg',
'alpha_tox', 'q_AC'),
check_arrays=TRUE)
util$check_all_expectand_diagnostics(base_samples)

A1l expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

What do our more accurate inferences now have to say about the behavior of the hypothetical
cohort?

The histogram of conception probabilities exhibits similar behavior to before, with the baseline
peak mostly the same across the two cohorts but the remaining bulk shifting slightly towards
larger conception probabilities in the hypothetical treatment.

par (mfrow=c(1, 2), mar=c(5, 5, 1, 1))

util$plot_hist_quantiles(samplesd4b, 'q_pred', -0.05, 1.05, 0.1,
xlab="Natural Conception Probability",
main="0bserved Cohort")

util$plot_hist_quantiles(samplesd4b, 'q_hyp_pred', -0.05, 1.05, 0.1,

xlab="Natural Conception Probability",
main="Hypothetical Cohort")
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With the ART conceptions no longer biasing our inferences the hypothetical treatment appears
to have similar benefits for both the ensemble average conception probability and the ensemble
lower quantile conception probability.

var_repl <- list('p'=util$name_array('q_pred', c(data$N_pred)))
pop_ave_samples <-
util$eval_expectand_pushforward(sampleséb,
function(p) mean(p),
var_repl)

var_repl <- list('p'=util$name_array('q_hyp_pred', c(data$N_pred)))
hyp_pop_ave_samples <-
util$eval_expectand_pushforward(sampleséb,
function(p) mean(p),
var_repl)

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))
name <- "Natural Conception Probability\nPopulation Average"

util$plot_expectand_pushforward(pop_ave_samples,
25, flim=c(0.45, 0.65),
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display_name=name,
col=util$c_light)
text (0.500, 20, "Observed\nCohort", col=util$c_light)

util$plot_expectand_pushforward(hyp_pop_ave_samples,
25, flim=c(0.45, 0.65),
border="#BBBBBB88" ,
add=TRUE)

text (0.605, 15, "Hypothetical\nCohort", col=util$c_dark)

Hypothetical
Cohort

Estimated Bin
Probabilities / Bin Width

0.45 0.50 0.55 0.60 0.6%
Natural Conception Probability
Population Average

ave_samples <- list("obs" = pop_ave_samples,
"hyp" = hyp_pop_ave_samples)
p_est <-
util$implicit_subset_prob(ave_samples,

function(obs, hyp) hyp > obs)
format_string <- paste("Posterior probability that hypothetical",
"population average\nis greater than observed",

"population average = %.3f +/- %.3f.")
cat(sprintf (format_string, p_est[1], 2 * p_est[2]))

Posterior probability that hypothetical population average
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is greater than observed population average = 0.779 +/- 0.013.

var_repl <- list('p'=util$name_array('q_pred', c(data$N_pred)))
pop_quant_samples <-
util$eval_expectand_pushforward(sampleséb,
function(p) quantile(p, prob=c(0.25)),
var_repl)

var_repl <- list('p'=util$name_array('q_hyp_pred', c(data$N_pred)))
hyp_pop_quant_samples <-
util$eval _expectand_pushforward(samples4b,
function(p) quantile(p, prob=c(0.25)),
var_repl)

par (mfrow=c(1, 1), mar=c(5, 5, 1, 1))

name <- "Natural Conception Probability\nPopulation Lower Quantile"

util$plot_expectand_pushforward(pop_quant_samples,
25, flim=c(0.0, 0.7),
display_name=name,
col=util$c_light)

text (0.2, 10, "Observed\nCohort", col=util$c_light)

util$plot_expectand_pushforward(hyp_pop_quant_samples,
26, flim=c(0.0, 0.7),
border="#BBBBBB88",
add=TRUE)

text (0.4, 5, "Hypothetical\nCohort", col=util$c_dark)
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quant_samples <- list("obs" = pop_quant_samples,
"hyp" = hyp_pop_quant_samples)
p_est <-
util$implicit_subset_prob(quant_samples,
function(obs, hyp) hyp > obs)

format_string <- paste("Posterior probability that hypothetical",
"population lower quantile\nis greater than",
"observed population lower quantile",
"= %.3f +/- %.3f.")

cat(sprintf (format_string, p_est[1], 2 * p_est[2]))

Posterior probability that hypothetical population lower quantile
is greater than observed population lower quantile = 0.680 +/- 0.015.

7 Conclusion

Acknowledging an underlying data generating process, and using any available domain exper-
tise to model it, is a powerful way to guide statistical analyses. In this case study we were
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able to model not only the variation in natural conception probability across patient charac-
teristics but also the patient characteristics themselves and the potential contamination from
alternative conception methods.

This analyses has only scratched the surface of what Bayesian modeling techniques can accom-
plish. For example the patient characteristic model we built can be used as a basis for inferring
partially missing clinical and demographic information, a process also known as imputation.
This can be especially useful when dealing with complications like patient dropout across the
observation interval.

At the same time we can model not only the conception behavior within the ART and non-
ART groups but also the probability of any particular patient using ART. In general this
probability might be coupled with the other patient characteristic behaviors and modeling
that coupling would allow us to construct even more nuanced hypothetical cohorts, and more
precise generalized predictions.
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CC=clang

CXXFLAGS=-03 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macr
CXX=clang++ -arch x86_64 -ftemplate-depth-256

CXX14FLAGS=-03 —-mtune=native —-march=native -Wno-unused-variable -Wno-unused-function -Wno-ma
CXX14=clang++ -arch x86_64 -ftemplate-depth-256

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.7.5

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/1ib/1ibRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] colormap_0.1.4 rstan_2.32.6 StanHeaders_2.32.7

loaded via a namespace (and not attached):

[1] gtable_0.3.4 jsonlite_1.8.8 compiler_4.3.2 Rcpp_1.0.11

[5] stringr_1.5.1 parallel_4.3.2 gridExtra_2.3 scales_1.3.0

[9] yaml_2.3.8 fastmap_1.1.1 ggplot2_3.4.4 R6_2.5.1

[13] curl_5.2.0 knitr_1.45 tibble_3.2.1 munsell 0.5.0
[17] pillar_1.9.0 rlang_1.1.2 utf8_1.2.4 V8 4.4.1

[21] stringi_1.8.3 inline_0.3.19 xfun_0.41 RcppParallel _5.1.7
[25] cli_3.6.2 magrittr_2.0.3 digest_0.6.33 grid_4.3.2
[29] lifecycle_1.0.4 vctrs_0.6.5 evaluate_0.23 glue_1.6.2
[33] QuickJSR_1.0.8 codetools_0.2-19 stats4_4.3.2 pkgbuild_1.4.3
[37] fansi_1.0.6 colorspace_2.1-0  rmarkdown_2.25 matrixStats_1.2.0
[41] tools_4.3.2 loo _2.6.0 pkgconfig 2.0.3 htmltools _0.5.7
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Stan
Program 1 prior\_tune\_beta.stan

functions {

// Differences between beta tail probabilities

// and target probabilities

vector tail_delta(vector y, vector theta,

array[] real x_r, array[] int x_i) {

vector[2] deltas;
deltas[1] = beta_cdf (thetal[1] | exp(y[1]), exp(y[2])) - 0.01;
deltas[2] = 1 - beta_cdf(theta[2] | exp(y[1]), exp(y[2])) - 0.01;
return deltas;

+
}
data {
real<lower=0, upper=1> g_low; // Lower threshold
real<lower=q_low, upper=1> q_high; // Upper threshold
}

transformed data {
vector[2] y_guess = [log(5), log(5)]'; // Initial guess at beta parameters
vector[2] theta = [q_low, q_high]'; // Target quantiles
vector[2] y;
array[0] real x_r;
array[0] int x_i;

// Find beta parameters that ensure

// 1% probability below lower threshold

// and 1%, probability above upper threshold

y = algebra_solver(tail_delta, y_guess, theta, x_r, x_i);

print("alpha = ", exp(y[1]1));
print("beta = ", exp(y[2]));

generated quantities {
real alpha = exp(y[1]l);
real beta = exp(y[2]);
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Stan
Program 2 modell.stan

data {
// Number of observations
int<lower=1> N;

// Observed conception status

// y = 0: No conception

// y = 1: Conception

array[N] int<lower=0, upper=1> y;

parameters {
real<lower=0, upper=1> q_C; // Conception probability

}

model {
// Prior model
target += beta_lpdf(q C | 2.5, 2.0); // 0.10 <~ q_C <~ 0.95
// Observational model
target += bernoulli lpmf(y | q_C);
// Also valid but slightly less efficient
// for (n in 1:N) {
//  target += bernoulli_lpmf(y[n] | q_C);
!/}

}

generated quantities {
// Posterior predictive data
array[N] int<lower=0, upper=1> y_pred;

for (n in 1:N) {
y_pred[n] = bernoulli_rng(q_C);
+
}
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Stan
Program 3 model2.stan

data {
// Number of observations
int<lower=1> N;

// Relationship status
// k = 1: Stable partner
// k = 2: No partner
int<lower=1> K_rel;

// Cancer stage

// k = 1: No cancer

// k = 2: Early stage cancer

// k : Advanced stage cancer
int<lower=1> K_stg;

]
w

// Toxicity status
// k = 1: None

// k = 2: Low
// k = 3: Medium
// k = 4: High

int<lower=1> K_tox;

// Observed conception status

// y = 0: No conception

// y = 1: Conception

array[N] int<lower=0, upper=1> y;

// Observed relationship status;
array[N] int<lower=1, upper=K_rel> k_rel;

// Observed cancer stage;
array[N] int<lower=1, upper=K_stg> k_stg;

// Observed toxicity status;
array[N] int<lower=1, upper=K_tox> k_tox;

parameters {
// Probability of conception for baseline patients in a stable
// relationship, no cancer, and no toxicity
real<lower=0, upper=1> q_C_0O;

// Proportional decreases in conception probability due to

// non-baseline relationship status, cancer stage, and toxicity
// status.

positive_ordered[K_rel - 1] alpha_rel;

positive_ordered[K_stg - 1] alpha_stg;

positive_ordered[K_tox - 1] alpha_tox;



Stan
Program 4 model3a.stan

data {
// Number of observations
int<lower=1> N;

// Number of predictions
int<lower=1> N_pred;

// Relationship status
// k = 1: Stable partner
// k = 2: No partner
int<lower=1> K_rel;

// Cancer stage

// k = 1: No cancer

// k = 2: Early stage cancer

// k = 3: Advanced stage cancer
int<lower=1> K_stg;

// Treatment status
// k = 1: No treatment
// k = 2: Treatment
int<lower=1> K_trt;

// Toxicity status
// k = 1: None

// k = 2: Low
// k = 3: Medium
// k = 4: High

int<lower=1> K_tox;

// Observed conception status

// y = 0: No conception

// y = 1: Conception

array[N] int<lower=0, upper=1> y;

// Observed relationship status;
array[N] int<lower=1, upper=K_rel> k_rel;

// Observed cancer stage;
array[N] int<lower=1, upper=K_stg> k_stg;

// Observed treatment status;
array[N] int<lower=1, upper=K_trt> kggrt;

// Observed toxicity status;

array[N] int<lower=1, upper=K_tox> k_tox;

parameters {
// Marginal probability of cancer stage



Stan
Program 5 model3b.stan

data {
// Number of observations
int<lower=1> N;

// Number of predictions
int<lower=1> N_pred;

// Relationship status
// k = 1: Stable partner
// k = 2: No partner
int<lower=1> K_rel;

// Cancer stage

// k = 1: No cancer

// k = 2: Early stage cancer

// k = 3: Advanced stage cancer
int<lower=1> K_stg;

// Treatment status
// k = 1: No treatment
// k = 2: Treatment
int<lower=1> K_trt;

// Toxicity status
// k = 1: None

// k = 2: Low
// k = 3: Medium
// k = 4: High

int<lower=1> K_tox;

// Observed conception status

// y = 0: No conception

// y = 1: Conception

array[N] int<lower=0, upper=1> y;

// Observed relationship status;
array[N] int<lower=1, upper=K_rel> k_rel;

// Observed cancer stage;
array[N] int<lower=1, upper=K_stg> k_stg;

// Observed treatment status;
array[N] int<lower=1, upper=K_trt> kggrt;

// Observed toxicity status;
array[N] int<lower=1, upper=K_tox> k_tox;

// Hypothetical toxicity distribution configurations
vector [K_tox] alpha_tox_hypl;
vector [K_tox] alpha_tox_hyp2;



Stan
Program 6 model4a.stan

data {
// Number of observations
int<lower=1> N;

// Relationship status
// k = 1: Stable partner
// k = 2: No partner
int<lower=1> K_rel;

// Cancer stage

// k = 1: No cancer

// k = 2: Early stage cancer

// k : Advanced stage cancer
int<lower=1> K_stg;

]
w

// Treatment status
// k = 1: No treatment
// k = 2: Treatment
int<lower=1> K_trt;

// Toxicity status
// k = 1: None

// k = 2: Low
// k = 3: Medium
// k = 4: High

int<lower=1> K_tox;

// Observed conception status

// y = 0: No conception

// y = 1: Conception

array [N] int<lower=0, upper=1> y;

// 0Observed relationship status;
array[N] int<lower=1, upper=K_rel> k_rel;

// Observed cancer stage;
array[N] int<lower=1, upper=K_stg> k_stg;

// Observed treatment status;
array[N] int<lower=1, upper=K_trt> k_trt;

// Observed toxicity status;
array[N] int<lower=1, upper=K_tox> kg%ox;

// Observed assistive reproductive technology (ART) status
// k = 0: No ART

// k = 1: ART

array[N] int<lower=0, upper=1> k_art;



Stan
Program 7 model4b.stan

data {
// Number of observations
int<lower=1> N;

// Number of predictions
int<lower=1> N_pred;

// Relationship status
// k = 1: Stable partner
// k = 2: No partner
int<lower=1> K_rel;

// Cancer stage

// k = 1: No cancer

// k = 2: Early stage cancer

// k = 3: Advanced stage cancer
int<lower=1> K_stg;

// Treatment status
// k = 1: No treatment
// k = 2: Treatment
int<lower=1> K_trt;

// Toxicity status
// k = 1: None

// k = 2: Low
// k = 3: Medium
// k = 4: High

int<lower=1> K_tox;

// Observed conception status

// y = 0: No conception

// y = 1: Conception

array[N] int<lower=0, upper=1> y;

// Observed relationship status;
array[N] int<lower=1, upper=K_rel> k_rel;

// Observed cancer stage;
array[N] int<lower=1, upper=K_stg> k_stg;

// Observed treatment status;
array[N] int<lower=1, upper=K_trt> kggrt;

// Observed toxicity status;
array[N] int<lower=1, upper=K_tox> k_tox;

// Observed assistive reproductive technology (ART) status
// k = 0: No ART
// k = 1: ART
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