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In Chapter Four we defined measures, and probability distributions as a special case, as map-
pings from measurable subsets to allocated measures. These subset allocations, however, also
induce a somewhat surprising but incredibly powerful mapping from real-valued functions
to single real numbers that generalizes Riemann integration from calculus. This measure-
informed integration operation summarizes the interaction between a measure and a given
function, allowing us to use one to learn about the other.

We will being our exploration of measure-informed integration with a heuristic construction on
finite measure spaces before considering a more formal, but also more abstract, construction
that applies to any measure space. Next we’ll investigate how the specification of measure-
informed integrals can be used to implicitly define measures without having to explicitly define
subset allocations and some useful applications of these implicit specifications. Finally we’ll
consider particular measure-informed integrals that are distinguished by common ambient
space structures and then conclude with a discussion of a few exceptional measures whose
integrals can be computed algorithmically.

1 Integration on Finite Measure Spaces

To start our discussion of measure-informed integration as simply as possible let’s begin by
considering a finite measure space compromised of the finite set

𝑋 = {□, ♣, ♢, ♡, ♠},
a measure defined by the mass function

𝜇 ∶ 𝑋 → [0, ∞],
and a real-valued function 𝑓 ∶ 𝑋 → ℝ.

The allocations defined by the mass function weight the elements of 𝑋 relative to each other,
emphasizing some while suppressing others. At the same time the function 𝑓 associates those
elements with a numerical output. We can then weight the numerical outputs by combining
the weights of the inputs 𝜇(𝑥) and the individual output values 𝑓(𝑥),

𝜇(𝑥) ⋅ 𝑓(𝑥).
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Adding all of these weighted outputs together gives a single number that is sensitive to the
interplay between 𝜇 and 𝑓 ,

∑
𝑥∈𝑋

𝜇(𝑥) ⋅ 𝑓(𝑥) = 𝜇(□) ⋅ 𝑓(□)

+ 𝜇(♣) ⋅ 𝑓(♣)
+ 𝜇(♢) ⋅ 𝑓(♢)
+ 𝜇(♡) ⋅ 𝑓(♡)
+ 𝜇(♠) ⋅ 𝑓(♠).

This summary emphasizes not only large output values but also outputs from highly-weighted
inputs. For example even if the output 𝑓(□) is small the contribution from □ can still be
important if the atomic allocation 𝜇(□) is large.

This summary defines the integral of 𝑓 with respect to 𝜇,

𝕀𝜇[𝑓] ≡ ∑
𝑥∈𝑋

𝜇(𝑥) ⋅ 𝑓(𝑥).

We use square brackets instead of round brackets to visually denote that the mapping doesn’t
take points as input but rather entire functions.

An interesting side effect of this construction is that measure-informed integrals are linear:
given two real-valued functions 𝑓 ∶ 𝑋 → ℝ and 𝑔 ∶ 𝑋 → ℝ and two real constants 𝛼, 𝛽 ∈ ℝ we
have

𝕀𝜇[𝛼 ⋅ 𝑓 + 𝛽 ⋅ 𝑔] = ∑
𝑥∈𝑋

𝜇(𝑥) ⋅ [𝛼 ⋅ 𝑓(𝑥) + 𝛽 ⋅ 𝑔(𝑥)]

= ∑
𝑥∈𝑋

𝜇(𝑥) ⋅ (𝛼 ⋅ 𝑓(𝑥) + 𝛽 ⋅ 𝑔(𝑥))

= 𝛼 ⋅ ∑
𝑥∈𝑋

𝜇(𝑥) ⋅ 𝑓(𝑥) + 𝛽 ⋅ ∑
𝑥∈𝑋

𝜇(𝑥) ⋅ 𝑔(𝑥)

= 𝛼 ⋅ 𝕀𝜇[𝑓] + 𝛽 ⋅ 𝕀𝜇[𝑔].

We will exploit this linearity property endlessly when working with measure-informed inte-
grals.

The measure-informed integral 𝕀𝜇[𝑓] is sensitive to the behavior of 𝑓 , but only in the context
of 𝜇. By considering multiple test measures, however, we can use this operation to more fully
probe the behavior of a fixed function 𝑓 . Measure-informed integrals of 𝑓 with respect to test
measures that emphasizes certain input elements will be more sensitive to the corresponding
output elements, probing different aspects of 𝑓 . More intuitively we can interpret each test
measure 𝜇𝑗 as encoding a question about 𝑓 and the corresponding measure-informed integral
𝕀𝜇𝑗

[𝑓] as encoding the answer (Figure 1a).
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Figure 1: Measure-informed integrals probe the interaction between a measure and a real-
valued function. (a) If we fix the function 𝑓 then measure-informed integrals with
respect to multiple test measures are sensitive to different features of 𝑓 . We can
interpret each test measure as a question about 𝑓 with the corresponding measure-
informed integral providing an answer. (b) Similarly measure-informed integrals of
multiple test functions with respect to a fixed measure 𝜇 are sensitive to different
features of 𝜇. Again we can interpret each test function as a question about 𝜇 with
the corresponding measure-informed integral encoding an answer.

For example consider a singular probability mass function that concentrates entirely on a
single element,

𝛿𝑥′(𝑥) = { 1, 𝑥 = 𝑥′

0, 𝑥 ≠ 𝑥′ .

The measure-informed integrals of any real-valued function 𝑓 with respect to 𝛿𝑥𝑖
are given

by

𝕀𝛿𝑥′ [𝑓] = ∑
𝑥∈𝑋

𝛿𝑥′(𝑥) ⋅ 𝑓(𝑥)

= 𝛿𝑥′(𝑥′) ⋅ 𝑓(𝑥′) + ∑
𝑥≠𝑥′

𝛿𝑥′(𝑥) ⋅ 𝑓(𝑥)

= 1 ⋅ 𝑓(𝑥′) + ∑
𝑥≠𝑥′

0 ⋅ 𝑓(𝑥)

= 𝑓(𝑥′).
In other words measure-informed integration of functions with respect to 𝛿𝑥′ allow us to probe
the individual output values 𝑓(𝑥′).
Similarly consider a uniform probability mass function where each element is allocated the
same probability,

𝜋(𝑥) = 1
𝐼 .
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The corresponding measure-informed integrals captures the average of the function output
values,

𝕀𝜋[𝑓] = ∑
𝑥∈𝑋

𝜋(𝑥) ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

1
𝐼 ⋅ 𝑓(𝑥)

= 1
𝐼 ∑

𝑥∈𝑋
𝑓(𝑥).

When we use non-uniform measures this measure-informed integration generalizes averages to
more general summaries.

At the same time we can use different test functions to probe different features of a fixed
measure 𝜇. Measure-informed integrals of test functions with larger outputs for some inputs
will be more sensitive to the measures 𝜇 allocated to those inputs. Again we can interpret
each test function 𝑓𝑗 as encoding a different question about 𝜇 with the corresponding measure-
informed integrals 𝕀𝜇[𝑓𝑗] encoding the answer (Figure 1b).

For example for any subset x ⊂ 𝑋 we can construct an indicator function that returns 1 if
the input is contained in x and zero otherwise,

𝐼x(𝑥) = { 1, 𝑥 ∈ x
0, 𝑥 ∉ x .

In other words an indicator function indicates whether or not a point is contained in the
defining subset.

The measure-informed integral of the indicator function 𝐼x, however, is just the measure allo-
cated to x,

𝕀𝜇[𝐼x] = ∑
𝑥∈𝑋

𝜇(𝑥) ⋅ 𝐼x(𝑥)

= ∑
𝑥∈x

𝜇(𝑥) ⋅ 𝐼x(𝑥) + ∑
𝑥∉x

𝜇(𝑥) ⋅ 𝐼x(𝑥)

= ∑
𝑥∈x

𝜇(𝑥) ⋅ 1 + ∑
𝑥∉x

𝜇(𝑥) ⋅ 0

= ∑
𝑥∈x

𝜇(𝑥)

= 𝜇(x).

Measure-informed integrals of various indicator functions allow us to directly probe the various
subset allocations.
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2 Integration on General Measure Spaces

Unfortunately the straightforward construction of measure-informed integrals on finite spaces
doesn’t generalize to general measure spaces. In particular on uncountable spaces, where
element-wise allocations 𝜇({𝑥}) do not completely characterize a measure, the weighted output
values 𝜇({𝑥}) ⋅ 𝑓(𝑥) do not completely characterize the interaction between a measure and a
real-valued function.

In order to generalize measure-informed integrals to arbitrary measure spaces we have to appeal
to a more sophisticated construction with some subtle, but important, consequences.

2.1 Integration of Simple Functions

We’ll build up to general measure-informed integrals by considering increasingly sophisticated
classes of functions that are still nice enough for their measure-informed integrals to be unam-
biguous on any measurable space.

For example consider indicator functions which vanish outside of a given measurable subset
(Figure 2)

𝐼x(𝑥) = { 1, 𝑥 ∈ x
0, 𝑥 ∉ x .

x

0

1

Ix(x)

x

Figure 2: An indicator function corresponding to a measurable subset x ∈ 𝒳 vanishes for all
inputs that are not contained in x. Here x is an interval subset over a real line.

In order to generalize the behavior on finite measure spaces that we encountered in Section
One the measure-informed integral of any indicator function should be equal to the measure
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allocated to that subset,
𝕀𝜇[𝐼x] = 𝜇(x),

for any measure 𝜇.

We can manufacture even more complex functional behavior by overlaying multiple indicator
functions on top of each other. A simple function is given by the sum of scaled indicator
functions (Figure 3),

𝑠(𝑥) = ∑
𝑗

𝜙𝑗 ⋅ 𝐼x𝑗
(𝑥),

where
{x1, … , x𝑗, …} ∈ 𝒳

is any sequence of measurable subsets and

{𝜙1, … , 𝜙𝑗, …} ∈ ℝ

is any sequence of real numbers. By incorporating countably many indicator functions we can
engineer quite sophisticated functional behavior.

If we assume that measure-informed integration is a linear operation on any measure space
then we can immediately compute the integral of any simple function,

𝕀𝜇[𝑠] = 𝕀𝜇 [∑
𝑗

𝜙𝑗 ⋅ 𝐼x𝑗
]

= ∑
𝑗

𝜙𝑗 ⋅ 𝕀𝜇[𝐼x𝑗
]

= ∑
𝑗

𝜙𝑗 ⋅ 𝜇(x𝑗).

2.2 Integration of Measurable Functions

Most functions whose measure-informed integrals are of interest in practical analysis are not
simple functions. Relevant functions, however, can often be well-approximated by simple
functions. As we incorporate more and more indicator functions we can construct simple
functions that approximate non-simple functions better and better (Figure 4).

Some functions can even be exactly recovered from sufficiently flexible simple functions. A real-
valued function 𝑓 ∶ 𝑋 → ℝ is measurable with respect to the 𝜎-algebra 𝒳, or 𝒳-measurable,
if every half-interval of outputs

(−∞, 𝑥] ⊂ ℝ
pulls back to a measurable subset on (𝑋, 𝒳),

𝑓∗((−∞, 𝑥]) = {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ∈ (∞, 𝑥]} ∈ 𝒳.
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Figure 3: Simple functions are constructed from linear combinations of indicator functions.
Incorporating more indicator functions yields more sophisticated functional behavior.

f(x)

x

f(x)

x

f(x)

x

Figure 4: As we incorporate more indicator functions simple functions become more flexible
and are able to better approximate the behavior of non-simple functions. Certain
non-negative functions can be exactly recovered from sufficiently flexible simple func-
tions.
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In practice non-measurable functions are as difficult to construct as non-measurable subsets
and measurability can largely be taken for granted.

We’ll come back to the topic of measurable functions in much more detail in Chapter Seven. For
now our main concern will be to avoid confusing measurable subsets on (𝑋, 𝒳) and measurable
functions from (𝑋, 𝒳) to ℝ.

Measurable functions with non-negative outputs,

𝑓(𝑥) ≥ 0

for all 𝑥 ∈ 𝑋, are particularly special. Any non-negative, measurable function can always be
perfectly recovered as a certain limit of increasingly complicated simple functions,

𝑓(𝑥) =
∞

∑
𝑗=1

𝜙𝑗 ⋅ 𝐼x𝑗
(𝑥).

We can then define the measure-informed integral of a non-negative, measurable function as
the measure-informed integral of the corresponding simple function decomposition,

𝕀𝜇[𝑓] ≡ 𝕀𝜇 [
∞

∑
𝑗=1

𝜙𝑗 ⋅ 𝐼x𝑗
]

=
∞

∑
𝑗=1

𝜙𝑗 ⋅ 𝕀𝜇 [𝐼x𝑗
]

=
∞

∑
𝑗=1

𝜙𝑗 ⋅ 𝜇(x𝑗).

In general a non-negative, measurable function can be represented by more than one simple
function decomposition. Fortunately the measure-informed integral derived from any of them
will always be the same. Consequently there’s no worry for ambiguous of otherwise inconsistent
answers, and measure-informed integrals for non-negative, measurable function are completely
well-behaved.

This procedure for defining measure-informed integrals through simple functions representa-
tions is known as Lebesgue integration in the mathematics literature. In this book I will
use the more explicit “measure-informed integration” instead.

We’ve come a long way, but non-negative functions are still somewhat exceptional amongst
all of the functions that might come up in a given analysis. To define measure-informed
integrals for measurable functions that aren’t necessarily positive we just have to decompose
the functions by the sign of their outputs (Figure 5),

𝑓(𝑥) = 𝑓+(𝑥) − 𝑓−(𝑥),
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where
𝑓+(𝑥) = { 𝑓(𝑥), 𝑓(𝑥) ≥ 0

0, 𝑓(𝑥) < 0
and

𝑓−(𝑥) = { −𝑓(𝑥), 𝑓(𝑥) < 0
0, 𝑓(𝑥) ≥ 0 .

f(x)

x

f+(x)

x

f−(x)

x

Figure 5: Every real-valued function 𝑓 ∶ 𝑋 → ℝ function can be decomposed by the sign of its
output values, resulting in the two positive functions 𝑓+ ∶ 𝑋 → ℝ+ and 𝑓− ∶ 𝑋 → ℝ+.

Because 𝑓+ and 𝑓− are both non-negative we can construct their measure-informed integrals
𝕀𝜇[𝑓+] and 𝕀𝜇[𝑓−] as above. Provided that the measure-informed integrals are not both infinite
we can then define the measure-informed integral of 𝑓 by taking advantage of linearity,

𝕀𝜇[𝑓] = 𝕀𝜇[𝑓+ − 𝑓−] = 𝕀𝜇[𝑓+] − 𝕀𝜇[𝑓−].

One way to ensure that this difference is well-defined is to require that

𝕀𝜇[ |𝑓| ] = 𝕀𝜇[𝑓+ + 𝑓−] = 𝕀𝜇[𝑓+] + 𝕀𝜇[𝑓−]

is finite. Measurable functions 𝑓 ∶ 𝑋 → ℝ with

𝕀𝜇[|𝑓|] < ∞

are said to be Lebesgue integrable with respect to 𝜇, or just 𝜇-integrable for short.

I will refer to any real-valued function 𝑓 ∶ 𝑋 → ℝ that is measurable with respect to the ambient
𝜎-algebra and integrable with respect to any relevant measures simply as an integrand.

Nearly every real-valued function that we will encounter in practical applications will be mea-
surable. Consequently taking this technical assumption for granted is largely safe. Many
real-valued functions will also be integrable with respect to typical measures, especially when
we restrict attention to probability distributions. That said there are enough exceptions that
we have to be careful to explicitly validate integrability in practice.
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2.3 Equivalent Integrands

One subtle but important consequence of this general definition of measure-informed integra-
tion is that many integrands will yield the same measure-informed integrals even when their
individual outputs are not all equal!

To see why let’s consider a simple function 𝑠 ∶ 𝑋 → ℝ that’s build up from arbitrarily many
indicator functions,

𝑠(𝑥) = ∑
𝑗

𝜙𝑗 ⋅ 𝐼x𝑗
(𝑥).

Adding another indicator function with respect to the measurable subset x′ gives another
simple function,

𝑠′(𝑥) = 𝑠(𝑥) + 𝜙′ ⋅ 𝐼x′(𝑥).
The measure-informed integrals of these two simple functions are then related to each other
by

𝕀𝜇[𝑠′] = 𝕀𝜇[𝑠 + 𝜙′ ⋅ 𝐼x′ ]
= 𝕀𝜇[𝑠] + 𝜙′ ⋅ 𝕀𝜇[𝐼x′ ]
= 𝕀𝜇[𝑠] + 𝜙′ ⋅ 𝜇(x′).

When 𝜙′ ≠ 0 then 𝑠(𝑥) and 𝑠′(𝑥) will differ for all 𝑥 ∈ x′; so long as x′ is not the empty set then
the function outputs will differ for at least some inputs. On the other hand the corresponding
measure-informed integrals will differ only if

𝜇(x′) > 0!

In other words if x′ is a 𝜇-null subset then 𝑠 and 𝑠′ will share the exact same 𝜇-integrals.

More generally any two integrands 𝑓 ∶ 𝑋 → ℝ and 𝑔 ∶ 𝑋 → ℝ will share the same 𝜇-integrals
if the subset of input points where their outputs differ,

x𝛿 = {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ≠ 𝑔(𝑥)},

is a subset of 𝜇-null subset,
x𝛿 ⊆ x ∈ 𝒳

with
𝜇(x) = 0.

Intuitively modifying integrands on sets of measure zero does not affect their measure-informed
integrals.

If the subset of deviant inputs is contained within a 𝜇-null subset then 𝑓 and 𝑔 are said to be
equal almost everywhere with respect to 𝜇. When working with probability distributions
instead of measures the term almost surely equal is used instead. A bit more colloquially
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we can say that the two integrands are equal up to subsets of measure zero or equal up
to null subsets.

Much of the mathematics literature overloads the equals sign when referring to measurable
functions that are equal almost everywhere in equations, as that is the only notion of equals
that is relevant in measure and probability theory. In this book I will be more explicit and
use

𝑓 𝜇= 𝑔
whenever comparing two measurable functions that are equal up to 𝜇-null subsets.

Intuitively the null subsets of a measure can “wash out” some of the finer structure of inte-
grands. For example on a real line any countable collection of points is allocated zero Lebesgue
measure. Consequently integration with respect to the Lebesgue measure will disregard any
“point defects” in the integrals (Figure 6).

f1(x)

x

f2(x)

x

f3(x)

x

Figure 6: Because any countable collection of points is allocated zero Lebesgue measure any
integrands whose outputs differ only at a countable number of inputs will yield the
same measure-informed integrals. Here 𝕀𝜆[𝑓1] = 𝕀𝜆[𝑓2] = 𝕀𝜆[𝑓3] and, from perspective
of the Lebesgue measure, these functions are equivalent. In this case we write 𝑓1

𝜆=
𝑓2

𝜆= 𝑓3.

Applications of measure theory can’t distinguish between integrands that are equal up to sets of
measure zero. If we want to avoid this ambiguity then we have to impose structural constraints
to isolate a single, unique integrands from the collection of equivalent integrands. For example
we can modify a continuous integrands on input subsets of measure zero without changing
the measure-informed integrals, but those modifications will also introduce discontinuities.
Amongst all of the equivalent integrands only one will be continuous and even though general
integrands are not unique continuous integrands are.

Equality up to sets of measure zero is mostly a technical concern, but there are few exceptional
circumstances where it will be relevant in practice. I will clearly point these circumstances out
as we go along.
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2.4 Alternative Measure-Informed Integral Notations

One of the limitations of the measure-informed integral notation, 𝕀𝜇[𝑓], is that it doesn’t denote
the ambient space. When working on a single space this isn’t too much of an issue, but it can
cause confusion when we start working with multiple spaces at the same time.

A more expressive notation like
𝕀(𝑋,𝒳,𝜇)[𝑓]𝕀(𝑌 ,𝒴,𝜈)[𝑔]

is much more explicit but also much more cumbersome. Mathematicians have developed a
variety of shorthand notations that offer different compromises between clarity and compact-
ness.

For example some references denote measure-informed integrals as

𝕀𝜇[𝑓] = ∫
𝑋

𝜇 𝑓,

where the subscript of the integral sign allows us to specify the ambient space and a 𝜎-algebra
is taken for granted. When using this notation, however, we have to be careful to not confuse
∫ with the Riemann integral from calculus. We’ll discuss the subtle relationship between
measure-informed integration and Riemann integration in detail in Section 5.2.

We can also use variables to denote the ambient space. Taking 𝑥 ∈ 𝑋 to be a variable that
takes values in 𝑋, some references denote measure-informed integrals as

𝕀𝜇[𝑓] = ∫ 𝜇(d𝑥) 𝑓(𝑥),

or
𝕀𝜇[𝑓] = ∫ d𝜇(𝑥) 𝑓(𝑥).

The placement of the measure and the integrand is conventional; some references prefer in-
stead

𝕀𝜇[𝑓] = ∫ 𝑓(𝑥) 𝜇(d𝑥),

and
𝕀𝜇[𝑓] = ∫ 𝑓(𝑥) d𝜇(𝑥).

Again when using these particular notations we have to be careful to avoid confusing them
with Riemann integrals.

For this book I will use 𝕀𝜇[𝑓] most often, but when it becomes convenient I’ll also use the
notation

𝕀𝜇[𝑓] = ∫ 𝜇(d𝑥) 𝑓(𝑥).
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2.5 Expectation Values

In this book we will ultimately be interested in not general measures but rather probability
distributions. General measures will be used only as tools to help implement probability
distributions in practice.

Within this context measure-informed integration is also known as expectation, with measure-
informed integrals known as expectation values, 𝔼𝜋[𝑓]. Similarly integrands become ex-
pectands.

Technically either terminology is correct when referring to probability distributions, but I will
use the expectation terminology as much as possible to better relate to the statistics literature
where it is typical.

3 Specifying Measures With Integrals

To this point we have derived measure-informed integrals as a consequence of measurable
subset allocations. Measure-informed integrals, however, can also be used to define measures
directly, with subset allocations derived indirectly. While a bit more abstract than our initial
approach this perspective does have its benefits.

3.1 Functional Perspective of Measures

Measure-informed integrals map real-valued functions into real numbers. If we denote the
space of all functions from 𝑋 to ℝ as 𝐶(𝑋) then we might be tempted to write this mapping
as

𝕀𝜇 ∶ 𝐶(𝑋) → ℝ
𝑓 ↦ 𝕀𝜇[𝑓].

Unfortunately this isn’t technically correct because not every real-valued function has a well-
defined measure-informed integral. In other words 𝐶(𝑋) is too large of an input space.

To remedy that we can define
𝐿(𝑋, 𝒳, 𝜇) ⊂ 𝐶(𝑋)

as the subset of real-valued functions from 𝑋 to ℝ that are measurable with respect to 𝒳 and
then integrable with respect to 𝜇. Using the terminology introduced in the previous section,
𝐿(𝑋, 𝒳, 𝜇) is the space of integrands.
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With this notation measure-informed integration can be interpreted as a map from integrands
to real numbers,

𝕀𝜇 ∶ 𝐿(𝑋, 𝒳, 𝜇) → ℝ
𝑓 ↦ 𝕀𝜇[𝑓].

In fact measure-informed integration is the only linear mapping of this form.

Because 𝐿(𝑋, 𝒳, 𝜇) contains all of the indicator functions this functional relationship between
𝐿(𝑋, 𝒳, 𝜇) and ℝ determines the allocations to every measurable subset, and hence full deter-
mines the measure 𝜇. At the same time 𝐿(𝑋, 𝒳, 𝜇) also contains many integrands that are
not indicator functions, and hence quite a bit of redundant information about 𝜇.

Sufficiently nice measures can be completely characterized by their integral action on subsets of
𝐿(𝑋, 𝒳, 𝜇) that do not contain any indicator functions at all! In theory the measure-informed
integrals of other integrands, including indicator functions to recover subset allocations, can
then be derived from these initial integrals. These sparser characterizations are particularly
useful for analyzing certain theoretical properties of measures with the tools of functional
analysis.

The integration perspective also has its benefits for applied practice. For example once we’ve
built a probability distribution relevant to an application we will use expectation values to
extract meaningful information. Probabilistic computational algorithms automate this
process, mapping expectands to expectation values exactly or, more realistically, approxi-
mately.

Interpreting measures as integral generators helps us understand not only what operations we
need to carry out to realize an applied analysis but also how well our algorithmic tools actually
implement those operations. We will spend a good bit of time discussing these issues in later
chapters.

3.2 Scaling Measures

Measures become much more flexible tools when we can readily modify their behavior, enhanc-
ing the measure at some points while suppressing it at others. The functional perspective of
measures is particularly convenient for implicitly defining these modifications that would be
at best awkward to specify directly through subset allocations.

For example let’s say that we want to globally scale the subset allocations defined by 𝜇 with a
constant 𝛼 ∈ ℝ+. The scaled measure is straightforward to define by modifying the individual
subset allocations,

(𝛼 ⋅ 𝜇)(x) ≡ 𝛼 ⋅ 𝜇(x)
for all measurable subsets x ∈ 𝒳.
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These scaled allocations then imply that measure-informed integrals of simple functions with
respect to 𝛼⋅𝜇 can be recovered as measure-informed integrals of scaled integrands with respect
to 𝜇,

𝕀𝛼⋅𝜇[𝑠] = 𝕀𝛼⋅𝜇 [∑
𝑗

𝜙𝑗 ⋅ 𝐼x𝑗
]

= ∑
𝑗

𝜙𝑗 ⋅ 𝕀𝛼⋅𝜇[𝐼x𝑗
]

= ∑
𝑗

𝜙𝑗 ⋅ (𝛼 ⋅ 𝜇)(x𝑗)

= ∑
𝑗

𝜙𝑗 ⋅ 𝛼 ⋅ 𝜇(x𝑗)

= 𝛼 ⋅ ∑
𝑗

𝜙𝑗 ⋅ 𝜇(x𝑗)

= 𝛼 ⋅ ∑
𝑗

𝜙𝑗 ⋅ 𝕀𝜇[𝐼x𝑗
]

= 𝕀𝜇 [𝛼 ⋅ ∑
𝑗

𝜙𝑗 ⋅ 𝐼x𝑗
]

= 𝕀𝜇[𝛼 ⋅ 𝑠].

Because general measure-informed integrals are derived from the measure-informed integrals
of simple functions we will then have

𝕀𝛼⋅𝜇[𝑓] = 𝕀𝜇[𝛼 ⋅ 𝑓]

for every integrand 𝑓 ∶ 𝑋 → ℝ. In other words these modified integrals fully define the scaled
measure 𝛼 ⋅ 𝜇 just as well as the modified subset allocations.

To complicate matters we might then ask how we can locally scale a measure by some positive,
𝒳-measurable, real-valued function 𝑔 ∶ 𝑋 → ℝ+. Because 𝑔 varies across non-atomic subsets
it is no longer clear how we can consistently modify all of the initial subset allocations to be
larger when 𝑔 is larger and smaller when 𝑔 is smaller.

The functional construction, however, immediately generalizes. We can define a scaled measure
𝑔 ⋅ 𝜇 as the unique measure with the integrals

𝕀𝑔⋅𝜇[𝑓] ≡ 𝕀𝜇[𝑔 ⋅ 𝑓]

for every integrand 𝑓 ∶ 𝑋 → ℝ with

𝕀𝜇[ |𝑔 ⋅ 𝑓| ] < ∞.
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This integral definition can then be used to calculate the subtle, but necessary, modifications
to the subset allocations,

(𝑔 ⋅ 𝜇)(x) = 𝕀𝑔⋅𝜇[𝐼x]
= 𝕀𝜇[𝑔 ⋅ 𝐼x].

In particular the modified subset allocations are no longer given by simple scalings of the initial
subset allocations!

This flexible construction can be applied in a variety of useful ways. For example scaling a
measure 𝜇 by the indicator function of a measurable subset x′,

𝕀𝐼x′ ⋅𝜇[𝑓] ≡ 𝕀𝜇[𝐼x′ ⋅ 𝑓],

consistently zeroes out all measure outside of x′, restricting 𝜇 to that subset. If 𝑋 is an ordered
space and x′ is an interval subset then this restriction is also known as truncation.

3.3 Scaling Probability Distributions

Scaling probability distributions is not quite as straightforward because we have to maintain
the proper normalization. Naively scaling a probability distribution 𝜋 with a positive, 𝒳-
measurable, real-valued function 𝑔 ∶ 𝑋 → ℝ+ results in a total measure

(𝑔 ⋅ 𝜋)(𝑋) = 𝕀𝑔⋅𝜋[𝐼𝑋]
= 𝕀𝑔⋅𝜋[1]
= 𝔼𝜋[𝑔]

which is not, in general, equal to 1. In other words scaling a probability distribution results
not in another probability distribution but rather a generic measure.

If we want transform one probability distribution into another then we need to correct for the
modified normalization, defining

𝔼𝑔∗𝜋[𝑓] ≡ 𝔼𝜋 [ 𝑔
𝔼𝜋[𝑔] ⋅ 𝑓]

= 𝔼𝜋[𝑔 ⋅ 𝑓]
𝔼𝜋[𝑔]

for every expectand 𝑓 ∶ 𝑋 → ℝ with

𝔼𝜋[ |𝑔 ⋅ 𝑓| ] < ∞.

In this case the modified subset allocations become

(𝑔 ∗ 𝜋)(x) = 𝔼𝜋[𝑔 ⋅ 𝐼x]
𝔼𝜋[𝑔] .
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Specifically we will always have

(𝑔 ∗ 𝜋)(𝑋) = 𝔼𝜋[𝑔 ⋅ 𝐼𝑋]
𝔼𝜋[𝑔]

= 𝔼𝜋[𝑔]
𝔼𝜋[𝑔]

= 1

as necessary.

For example scaling with an indicator function restricts a probability distribution to the corre-
sponding subset and reduces the total probability to the probability initially allocated to that
subset,

(𝐼x′ ⋅ 𝜋)(𝑋) = 𝕀𝐼x′ ⋅𝜋[𝐼𝑋]
= 𝕀𝐼x′ ⋅𝜋[1]
= 𝕀𝜋[𝐼x′ ]
= 𝜋(x′).

Scaling and then normalizing, however, corrects the proportional subset allocations to this
restriction,

(𝐼x′ ∗ 𝜋)(x) =
𝔼𝐼x′ ∗𝜋[𝐼x]
𝔼𝜋[𝐼x′ ]

= 𝔼𝜋[𝐼x′ ⋅ 𝐼x]
𝔼𝜋[𝐼x′ ]

= 𝔼𝜋[𝐼x′∩x]
𝔼𝜋[𝐼x′ ]

= 𝜋(x′ ∩ x)
𝜋(x′) .

In particular
(𝐼x′ ∗ 𝜋)(𝑋) = 𝜋(x′ ∩ 𝑋)

𝜋(x′) = 𝜋(x′)
𝜋(x′) = 1.

4 Structure-Informed Integrals

Every ambient space admits infinitely many real-valued functions, and hence endless ways to
interrogate a given measure through measure-informed integration. Some integrands, however,
are naturally compatible with the structure of the space itself, and their integrals extract
particularly interpretable information. In this section we’ll review some of the most common
structure-informed integrals.
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4.1 Moments and Cumulants

Some spaces are inherently related to a real line. The precise relationship between the elements
of a space and the elements of a real line defines a distinguished real-valued function, and hence
a distinguished integrand. We can even build off of this initial integrand to construct an entire
family of useful integrands.

4.1.1 Embeddings

In order for an ambient space 𝑋 to be compatible with a real line it needs to share the metric
structure of the real line. We say that we can embed a metric space 𝑋 into a real line if
we can construct an isometric injection 𝜄 ∶ 𝑋 → ℝ, in other words a function that maps each
element of 𝑋 to a distinct output while also preserving distances,

𝑑𝑋(𝑥1, 𝑥2) = 𝑑ℝ(𝜄(𝑥1), 𝜄(𝑥2)) = |𝜄(𝑥2) − 𝜄(𝑥1)|.

Embedding maps are often denoted with a hooked arrow instead of the typical flat arrow,

𝜄 ∶ 𝑋 ↪ ℝ,

to communicate that some structure is being preserved by definition.

Note that the construction of an embedding requires that we fix the output structure of the
output real line, specifying either a particular rigid real line or a particular parameterization
of a flexible real line. An ambient might embed into a real line, but it cannot embed into all
real lines at the same time.

For example if 𝑋 is itself a real line then the identify map defines a natural embedding 𝜄 ∶ ℝ ↪ ℝ
(Figure 7a). Similarly we can embed subsets of a real line, such as intervals 𝜄 ∶ [𝑥1, 𝑥2] ↪ ℝ
(Figure 7b) or even integers 𝜄 ∶ ℤ ↪ ℝ (Figure 7c).

ι : R→ R

R R

+1 +1
+2 +2
+3 +3
+4 +4

−4 −4
−3 −3
−2 −2
−1 −1

· · ·

· · ·

0 0

· · ·

· · ·

(a)

ι : [0, 1]→ R

[0, 1] ⊂ R R

+1
+2
+3
+4

−4
−3
−2
−1

1
0 0

· · ·

· · ·

(b)

ι : Z→ R

Z R

+1 +1
+2 +2
+3 +3
+4 +4

−4 −4
−3 −3
−2 −2
−1 −1

· · ·

· · ·

0 0

· · ·

· · ·

(c)

Figure 7: Many spaces naturally embed into a real line, including (a) that real line, (b) intervals
of that real line, and (c) integers.

The existence of an embedding map can be interpreted in a few different ways. On one hand
it implies that 𝑋 is isomorphic to some subset of a real line, if not an entire real line, which
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allows us to interpret 𝑋 as that subset. Alternatively we can think of an embedding map as
assigning to each element 𝑥 ∈ 𝑋 a numerical position that we can use to characterize geometric
behavior. Both interpretations are useful but in this section we will lean heavily on this latter
perspective.

When an embedding map is measurable with respect to the ambient 𝜎-algebra and integrable
with respect to the ambient measure it defines an integrand. Most embedding maps are
measurable but integrability is less dependable, and failures of integrability are important in
practice.

4.1.2 The Mean

If an embedding function is an integrand than we can evaluate its measure-informed integral,
𝕀𝜇[𝜄]. The ultimately utility of this measure-informed integral, however, depends on what
information about the ambient measure it extracts.

Interpreting 𝕀𝜇[𝜄] is straightforward when 𝑋 is finite, 𝒳 is the full power set, and we can
represent any measure with a mass function. In this case we can explicitly compute the 𝕀𝜇[𝜄]
as a weighted sum of positions,

𝕀𝜇[𝜄] = ∑
𝑥∈𝑋

𝜇(𝑥) 𝜄(𝑥).

The more measure that is allocated to an element the more strongly the measure-informed
integral is pulled towards the position of that element. In other words 𝕀𝜇[𝜄] is one way to
quantify the position around which the measure 𝜇 concentrates, defining a notion of centrality
for the measure 𝜇.

This interpretation does generalize to arbitrary spaces, although the formal motivation is a bit
more subtle because we can no longer interpret measure-informed integrals as simple weighted
sums. Instead consider a baseline position 𝑟0 ∈ ℝ and the squared distance function

𝑑2
𝑟0

∶ 𝑋 → ℝ+

𝑥 ↦ (𝜄(𝑥) − 𝑟0)2

which quantifies how far the position of any point in the ambient space is from that baseline
position.

So long as 𝜄 ∶ 𝑋 ↪ ℝ is an embedding this squared distance function will be measurable and
will define a valid integrand. The measure-informed integral

𝕀𝜇 [𝑑2
𝑟0

] = 𝕀𝜇 [(𝜄 − 𝑟0)2]
= 𝕀𝜇 [𝜄2 − 2 𝑟0 𝜄 + 𝑟2

0]
= 𝕀𝜇 [𝜄2] − 2 𝑟0 ⋅ 𝕀𝜇 [𝜄] + 𝕀𝜇 [𝑟2

0]
= 𝕀𝜇 [𝜄2] − 2 𝑟0 ⋅ 𝕀𝜇 [𝜄] + 𝑟2

0
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quantifies how diffusely the measure 𝜇 is allocated around 𝑟0; the larger the integral the less
𝜇 concentrates around 𝑟0.

Consequently the baseline position 𝑟0 ∈ ℝ with the smallest integrated squared distance should
be, in some sense, the position closest to where 𝜇 concentrates. Because we’re working with con-
tinuous positions we can compute the baseline position that minimizes the integrated squared
distance using calculus methods even if 𝑋 itself is not continuous.

In particular the minimum 𝑟∗
0 is given by setting the derivative of the measure-informed inte-

gral,

d
d𝑟0

𝕀𝜇 [𝑑2
𝑟0

] = d
d𝑟0

(𝕀𝜇 [𝜄2] − 2 𝑟0 ⋅ 𝕀𝜇 [𝜄] + 𝑟2
0)

= −2 𝕀𝜇 [𝜄] + 2 𝑟0,

to zero,

0 = d
d𝑟0

𝕀𝜇 [𝑑2
𝑟0

]∣
𝑟0=𝑟∗

0

0 = −2 𝕀𝜇 [𝜄] + 2 𝑟∗
0

2 𝑟∗
0 = 2 𝕀𝜇 [𝜄]

𝑟∗
0 = 𝕀𝜇 [𝜄] .

In other words the measure-informed integral of the embedding function 𝕀𝜇[𝜄] is exactly the
position that minimizes the expected squared distance and, in that sense, is closest to the
concentration of 𝜇. Note that if 𝑋 is not continuous, for example if 𝑋 = ℤ, then this central
position might fall between the positions of the individual elements (Figure 8).

Because 𝕀𝜇 [𝜄] quantifies a sense of the centrality of the measure 𝜇 is referred to as the mean
of 𝜇, in reference to the “middle” of the measure. When space is at a premium I will use 𝕄𝜇
to denote the mean, with the ambient space and embedding map all implicit.

4.1.3 Higher-Order Moments and Cumulants

We have not yet, however, exhausted the usefulness of an embedding map. For example the
integrated squared distance from the mean

𝕀𝜇[𝑑2
𝕄𝜇

] = 𝕀𝜇[(𝜄 − 𝕄𝜇)2]

quantifies how strongly 𝜇 concentrates around its centrality; the larger the measure-informed
integral the more diffuse the concentration is. This is known as the variance of 𝜇.
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Figure 8: The measure-informed integral of an embedding function, 𝕀𝜇[𝜄], is a continuous value
even when the ambient space is discrete. In these cases the centrality of a measure
can fall “between” the individual elements.

Higher-powers extract even more information. For example the measure-informed integral of
the cubic integrand

𝕀𝜇 [(𝜄 − 𝕄𝜇)3]
characterizes how symmetric the concentration of 𝜇 is around its centrality.

The many measure-informed integral that we can construct from an embedding function can
be systemized in various ways. For example the direct powers

𝕄𝜇,𝑘 = 𝕀𝜇 [𝜄𝑘]

define the 𝑘-th order moments while the shifted powers

𝔻𝜇,𝑘 = 𝕀𝜇 [(𝜄 − 𝕄𝜇)𝑘]

define the 𝑘-th order central moments. In some cases normalizing the central moments,

ℕ𝜇,𝑘 = 𝕀𝜇 [(𝜄 − 𝕄𝜇)𝑘]
(𝔻𝜇,2)𝑘/2 = 𝕀𝜇 [(𝜄 − 𝕄𝜇)𝑘]

(𝕀𝜇 [(𝜄 − 𝕄𝜇)2])𝑘/2 ,

to give 𝑘-th order standardized central moments is also useful.

While straightforward to construct, higher-order moments can be tricky to interpret. More
useful information can often be isolated by carefully mixing a higher-order moment with lower-
order moments, resulting in cumulants, ℂ𝜇,𝑘. The general construction of cumulants is
complicated, with some very interesting but very elaborate connections to combinatorics, but
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in this book we’ll focus on the first few cumulants. Conveniently the first-order cumulant is
just the mean,

ℂ𝜇,1 = 𝕄𝜇,1,
the second-order cumulant is just the variance,

ℂ𝜇,2 = 𝔻𝜇,2,

and the third-order cumulant is just the third-order central moment,

ℂ𝜇,3 = 𝔻𝜇,3.

Beyond third-order the cumulants begin deviate away from the central moments.

4.1.4 Spaces Without Moments

Well-defined moments can be obstructed in three different ways. Firstly an isometric injection
from the ambient space into a real line might not exist. Secondly if an isometric injection does
exist then it needs to be not only 𝒳-measurable but also 𝜇-integrable. In practice measurability
is almost never an issue on finite dimensional ambient spaces, but we do need to take care to
check existence and integrability to avoid nonsensical results.

Consider, for example, a circular ambient space 𝑋 = 𝕊1 equipped with a metric that assigns
distances based on the angle spanned by any two points. We can construct an injective real-
valued function 𝑓 ∶ 𝕊1 → ℝ by first cutting the circle at any point, unrolling it into the
half-open interval (0, 2𝜋], and then mapping the half-open interval into the entire real line.

Unfortunately any function constructed this way will not be isometric; two points 𝑥1, 𝑥2 ∈ 𝕊1

around the cut will be close to each other in the circle but are mapped into points 𝑦1, 𝑦2 ∈
(0, 2𝜋], and then 𝑧1, 𝑧2 ∈ ℝ, that are far apart from each other (Figure 9).

Ultimately one can use the topological incompatibility between the circle and the real line that
we first encountered in Chapter Two to show that there is no way to construct any isometry
from the circle 𝕊1 into a real line ℝ, let alone an injective one.

This formal definition of moments is easy to dismiss as overly technical. Unfortunately the
practical consequences are critical when working with spaces like circles, spheres, torii, and
more. Many analyses on these spaces have been undermined by attempts to summarize mea-
sures with moments that don’t actually exist!

All of this said we still to take care with the necessary conditions when working with more
familiar spaces as well. For example in Section 5.2.2 we’ll learn that the identify function
from a real line into itself is not integrable with respect to the Lebesgue measure on a real
line. Consequently the Lebesgue measure does not have a mean, let alone a variance or other
higher-order moments.
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Figure 9: A circle 𝕊1 can be injectively mapped into a real line ℝ by first cutting the circle
into a half-open interval (𝜃0 − 𝜋, 𝜃0 + 𝜋] and then mapping the half-open interval
into a real line. This mapping, however, is not isometric. Two points 𝑥1, 𝑥2 ∈ 𝕊1

around the cut will be close to each other in the ambient space but map into points
𝑦1, 𝑦2 ∈ (0, 2𝜋], and then 𝑧1, 𝑧2 ∈ ℝ, that are far from each other. Without an
isometric injection we cannot define moments for any measure over a circle.
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4.2 Histograms

When the structure of the ambient space distinguishes certain subsets the corresponding in-
dicator functions become natural integrands to consider. Conveniently the measure-informed
integrals of indicator functions are also straightforward to interpret.

For example an ordering on the ambient space motivates interval subsets, such as the half-open
interval subsets

(𝑥1, 𝑥2] = {𝑥 ∈ 𝑋 ∣ 𝑥1 < 𝑥 ≤ 𝑥2}.
We can then use disjoint intervals to study the behavior of a measure by investigating how
the measure allocations, or equivalently the measure-informed integrals of the corresponding
indicator functions, vary across the ambient space.

More formally given the sequence of points

{𝑥1, … , 𝑥𝑏, … , 𝑥𝐵+1} ∈ 𝑋

we can partition the interval (𝑥1, 𝑥𝐵+1) into a sequence of 𝐵 disjoint half-open intervals,

b1 = (𝑥1, 𝑥2]
b2 = (𝑥2, 𝑥3]
…
b𝑏 = (𝑥𝑏, 𝑥𝑏+1]
…

b𝐵 = (𝑥𝐵, 𝑥𝐵+1].

Evaluating the measure-informed integral of the indicator function corresponding to each these
sub-intervals gives the allocated measure,

𝕀𝜇[𝐼b𝑏
] = 𝜇(b𝑏).

Each of these measure allocations can then be neatly visualized as a rectangle, with the
collection of measure allocations visualized as a sequence of adjacent rectangles (Figure 10).
This visualization is referred to as a histogram, with the individual intervals denoted bins.

Histograms are incredibly useful for quickly communicating some of the key features of a
measure (Figure 14). For example histograms allow us to differentiate between allocations
that concentrate around a point, referred to as unimodal measures, or even allocations that
concentrate around multiple points, referred to as multimodal measures. At the same time
we can see how a measure concentrates around a point, for example whether the concentrations
is symmetric or skewed towards smaller or larger values.

The smaller the bins the finer the features we can resolve but the more measure-informed
integrals we have to compute in order to construct the histogram (Figure 12). In practice we
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µ(bi)

x

Figure 10: A histogram allows us to visualize the behavior of a measure over an ordered space.
After partitioning a segment of the ambient space into disjoint intervals, or bins,
the measure allocated to each bin is represented by a rectangle.

have to choose a binning that is suited to each measure of interest without being too expensive
to implement.

The practical limitation of a finite number of bins also requires care in how we choose the
boundaries of a histogram. Because a histogram censors any behavior below 𝑥1 and above
𝑥𝐵+1 we need to choose the binning to span all of the behaviors of interest. For example if the
ambient measure allocations decay towards smaller and larger values then we can set the bin
boundaries to where the allocations start to become negligible.

On discrete measure spaces we can always tune the bins in a histogram to span only a single
element. In this case the height of each bin reduces to 𝜇({𝑥}) and the resulting histogram
reduces to a visualization of the mass function.

4.3 Cumulative Distribution Functions

On an ordered space we can also use interval subsets to visualize how the total measure is
allocated as we go from smaller values to larger values. More concretely consider the interval
subsets consisting of all points smaller than or equal to a given point,

I𝑥 = {𝑥′ ∈ 𝑋 ∣ 𝑥′ ≤ 𝑥}.
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(b)
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µ(bi)
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x
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Figure 11: Histogram are extremely effective at communicating the basic features of a measure.
The measure in (a) is diffuse but decaying, allocating more measure at smaller points
than larger points. Conversely the measure in (b) concentrates around a single point
while the measure in (c) concentrates around multiple, distinct points. Finally the
measure in (d) concentrates around a single point, but that concentration is strongly
asymmetric unlike the concentration in (b).

x

µ(bi)

x

3 · µ(bi)

x

15 · µ(bi)

Figure 12: A histogram with a finer binning communicates more detail about a given measure,
but also requires the computation of more measure-informed integrals and hence
is more expensive to construct. Here as we use smaller bins we start to resolve a
small side mode. Note that as we decrease the bins we also decrease the allocated
measures, and hence the height of each rectangle. Here the heights are scaled to ac-
commodate the smaller measures and make the comparison between the histograms
easier.
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The measure allocated to these interval subsets quantifies how the measure accumulates as we
scan across the space,

𝑀 ∶ 𝑋 → [0, 𝜇(𝑋)]
𝑥 ↦ 𝑀𝜇(𝑥) = 𝜇(I𝑥) = 𝕀𝜇[𝐼I𝑥 ].

According this mapping is known as a cumulative distribution function (Figure 13).

x

M(x)

µ(X)

0

Figure 13: A cumulative distribution function quantifies how measure is allocated to expanding
intervals on an ordered space. At the lower boundary of the space the interval
contains no points and the cumulative distribution function returns zero. As we
move towards larger values the interval expands, accumulating more and more
measure. Finally at the upper boundary of the space the interval asymptotes to
the total measure.

Cumulative distribution functions are also sometimes written as 𝜇([𝑥′ < 𝑥]) or even 𝜇(𝑥′ < 𝑥).
Personally I find these notations to be a bit too confusing as it’s easy to mistake which variable
denotes points in the interval and which variable defines the upper boundary of the interval
itself.

By construction if 𝑥1 < 𝑥2 then I𝑥1
⊂ I𝑥2

. Consequently

𝜇(I𝑥1
) ≤ 𝜇(I𝑥2

)

or, equivalently,
𝑀(𝑥1) ≤ 𝑀(𝑥2).

In other words every cumulative distribution function is a monotonically non-decreasing func-
tion that begins at 0 and ends at 𝜇(𝑋).
The precise shape of this non-decreasing accumulation conveys many features of the ambient
measure. For example if the measure concentrates around a single point then the cumulative
distribution function will rapidly increase around that point, increasing only slowly before
and after (Figure 14a). In general the faster the cumulative distribution function increases the
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stronger the concentration will be (Figure 14b). Similarly if there are any gaps in the allocation,
intermediate intervals with zero allocated measure, then the cumulative distribution function
will flatten out completely (Figure 14c).

x

M(x)

µ(x)

0

(a)

x

M(x)

µ(x)

0

(b)
n

x

M(x)

(c)

Figure 14: A careful survey of a cumulative distribution function can communicate a wealth of
information about the ambient measure. (a) Here the ambient measure is unimodal
with the cumulative distribution function appreciably increasingly only one we reach
the central neighborhood where the measure allocation is concentrated. (b) A
narrower concentration results in a steeper cumulative distribution function. (c)
A cumulative distribution function flattens if there are any gaps in the measure
allocation. Here the measure concentrates around two points separated by null
interval n in between.

One really nice feature of cumulative distribution functions is that they allow us to compute
explicit interval probabilities. The union of any two-sided, half-open interval

(𝑥1, 𝑥2] = {𝑥 ∈ 𝑋 ∣ 𝑥1 < 𝑥 ≤ 𝑥2}

with the disjoint one-sided interval 𝕀𝑥1
defines another one-sided interval,

I𝑥2
= I𝑥1

∪ (𝑥1, 𝑥2].

Because measure allocations are additive this implies that

𝜇(I𝑥2
) = 𝜇( I𝑥1

∪ (𝑥1, 𝑥2] )
= 𝜇(I𝑥1

) + 𝜇( (𝑥1, 𝑥2] )

or

𝜇(I𝑥2
) = 𝜇(I𝑥1

) + 𝜇( (𝑥1, 𝑥2] )
𝑀(𝑥2) = 𝑀(𝑥1) + 𝜇( (𝑥1, 𝑥2] )

𝜇( (𝑥1, 𝑥2] ) = 𝑀(𝑥2) − 𝑀(𝑥1).

In words the measure allocated to any half-open interval can be computed by subtracting the
cumulative distribution function outputs at the interval boundaries (Figure 15).
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M(x1)

x1

M(x2)

x2

M(x1)

x1

M(x2)

x2

(x1, x2]

µ( (x1, x2] ) =M(x2)−M(x1)

Figure 15: The difference of cumulative distribution function outputs at two points is equal
to the measure allocated to the half-open interval spanning those two points. This
allows us to calculate interval measure allocations as needed.

If the measure allocated to every measurable subset x ∈ 𝒳 can be derived from interval allo-
cations then a cumulative distribution function will provide enough information to compute
the measure allocated to every measurable subset. In other words the cumulative distribution
function in this case completely characterizes the measure, and it can be considered as alter-
native way to define measures entirely. Conveniently on every ordered measurable space that
we will encounter, such spaces of integers and real numbers equipped with Borel 𝜎-algebras,
this will be true.

On an ordered, discrete measure space the cumulative distribution function can be written as
the sum of mass function evaluations,

𝑀(𝑥) = 𝜇({𝑥′ ∈ 𝑋 ∣ 𝑥′ ≤ 𝑥})
= ∑

𝑥′≤𝑥
𝜇(𝑥′).

Consequently mass functions and cumulative distribution functions provide redundant infor-
mation on these spaces (Figure 16).

x

µ(x)

0

µ(X)

x

M(x)

Figure 16: On ordered, discrete measure spaces a mass function and cumulative distribution
function provide equivalent, and hence redundant, characterizations of a measure.
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Mass functions do not completely define a measure, however, on ordered but uncountable
spaces. In this case a cumulative distribution function can provide the information that the
element-wise allocations lack. For example on a real line a continuous cumulative distribution
function defines a measure that allocates zero to every atomic subset but still manages to
accumulate finite measure as we scan through the space. Any jumps in a cumulative distri-
bution function correspond to individual elements that have been allocated non-zero measure
(Figure 17).

x

M(x)

Figure 17: When the ambient space is ordered but uncountable and every atomic subset is a
null subset then the cumulative distribution function will be continuous. Any dis-
continuities in a cumulative distribution function correspond to exceptional atomic
subsets that have been allocated finite measure.

4.4 Quantiles

When a cumulative distribution function is bijective, mapping each point 𝑥 ∈ 𝑋 in the ambient
space to a unique accumulated measure

𝑀(𝑥) = 𝜇(I𝑥) = 𝕀𝜇[𝐼I𝑥 ],

we can invert it to map any accumulated measure to the point at which that accumulation is
achieved (Figure 18),

𝑞𝜇 ∶ [0, 𝜇(𝑋)] → 𝑋
𝑚 ↦ 𝑀−1(𝑚).

This inverse mapping is known as a quantile function.
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M−1(m)
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0 µ(X)

m

M−1(m)

Figure 18: If a cumulative distribution function is invertible then its inverse defines a quantile
function that maps accumulated measures to the points in the ambient space where
the accumulation is reached.

Because quantiles of probability distribution functions are particularly useful in some appli-
cations they are often given explicit names. For example the point at which half of the total
probability has been accumulated,

Π(𝑥0.5) = 0.5,
is denoted the median of the probability distribution. On spaces where a mean is well-
defined the median and mean complement each other by quantifying slightly different notions
of centrality. Similarly the points where a quarter of the probability has been accumulated
and a quarter of the probability remains,

Π(𝑥0.25) = 0.25
Π(𝑥0.75) = 0.75,

are known as the quartiles.

If the cumulative distribution function is not continuous then the quantile function will not
be well-defined. For example on a countable space the cumulative distribution function can
achieve only a countable number of accumulated measures. Any intermediate value 𝑚 can be
only bounded below by the point 𝑥𝑚− that achieves the largest accumulated measure below
𝑚,

𝑥𝑚− = argmax
𝑥∈𝑋

𝑀(𝑥) < 𝑚,

and bounded above by the point 𝑥+ that achieves the smallest accumulated measure above 𝑚
(Figure 19),

𝑥𝑚+ = argmin
𝑥∈𝑋

𝑀(𝑥) > 𝑚.

Many software packages implement heuristic quantile functions that either return 𝑥𝑚− or 𝑥𝑚+
or interpolate between 𝑥𝑚− and 𝑥𝑚+ to provide a single value when the cumulative distribution
function is not invertible. In this case different interpolation strategies define different quantile
functions.
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?m

M(xm−)

M(xm+)

xm− xm+

Figure 19: Cumulative distribution functions on countable spaces are not invertible. Only
a countable number of measure accumulations occur at individual points; most
measure accumulations occur “in between” the countable points.

5 Explicit Measure-Informed Integrals

Up to this point our discussion of measure-informed integration has been theoretical. Given
a measure 𝜇 we have shown that a linear map from sufficiently nice, real-valued functions 𝑓
to real numbers 𝕀𝜇[𝑓] ∈ ℝ is well-defined. We do not yet know, however, how to evaluate that
map to give explicit measure-informed integrals in practice.

Fortunately a few exceptional measures produce integrals that can be computed from certain
explicit mathematical operations that allow us to realize them in practice. In this section we’ll
review these exceptional measures and their practical consequences. Along the way we’ll also
see how measure-informed integration relates to the Riemann integral from calculus.

5.1 Integration on Discrete Measure Spaces

Because they can be completely specified by a mass function, measure allocations on dis-
crete measure spaces are particularly straightforward to implement in practice. Conveniently
measure-informed integrals on these spaces are also completely specified by mass functions.

5.1.1 Integration As Summation

For any discrete measurable space (𝑋, 2𝑋) we can always decompose a real-valued function
into a sum of atomic indicator functions,

𝑓(𝑥) = ∑
𝑥′∈𝑋

𝑓(𝑥′) ⋅ 𝐼{𝑥′}(𝑥).
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The integral with respect to any measure 𝜇 follows immediately by applying linearity,

𝕀𝜇[𝑓] ≡ 𝕀𝜇 [ ∑
𝑥′∈𝑋

𝑓(𝑥′) ⋅ 𝐼{𝑥′}]

= ∑
𝑥′∈𝑋

𝑓(𝑥′) ⋅ 𝕀𝜇 [𝐼{𝑥′}] ,

and then the definition of measure-informed integrals for indicator functions,

𝕀𝜇[𝑓] = ∑
𝑥′∈𝑋

𝑓(𝑥′) ⋅ 𝕀𝜇 [𝐼{𝑥′}]

= ∑
𝑥′∈𝑋

𝑓(𝑥′) ⋅ 𝜇({𝑥′}).

Consequently measure-informed integrals with respect to any real-valued function on discrete
measure spaces reduces to summations which we can compute explicitly. Moreover because
the summations are informed by only the measure allocations to atomic subsets they can be
computed using only the mass function and not the entire measure.

If 𝑋 is not only countable but also finite then the general definition of measure-informed
integral reduces to the heuristic construction that we considered in Section 1.

5.1.2 Practical Consequences

When 𝑋 is finite we can implement the summation given by any measure-informed integral by
directly looping over each integrand outputs. Unfortunately this approach becomes unfeasible
if 𝑋 contains a countably infinite number of elements.

Some infinite sums do enjoy closed-form solutions; for all other sums we cannot evaluate the
corresponding measure-informed integral exactly. That said we may be able to approximate
them by summing over only a finite number of elements where both 𝜇(𝑥) and 𝑓(𝑥) are large.
The more terms we include, the better these finite sums will approximate the exact measure-
informed integrals.

Consider, for example, the counting measure that allocates unit measure to each atomic sub-
set,

𝜒({𝑥}) = 1.
More generally the counting measure allocates measure by counting the number of elements
contained in a given subset,

𝜒(x) = ∑
𝑥∈x

1.

34



The integral of any real-valued function 𝑓 ∶ 𝑋 → ℝ with respect to counting measure is given
by over summing all of the output values,

𝕀𝜒[𝑓] = ∫ 𝜒(d𝑥) 𝑓(𝑥)

= ∑
𝑥∈𝑋

𝜒({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

1 ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

𝑓(𝑥).

In other words all integrals with respect to the counting measure can be implemented by simply
summing over the integrand outputs.

We can scale the counting measure by a positive function 𝑔 ∶ 𝑋 → ℝ+ following the strategy
introduced in Section 3.2. The scaled measure 𝑔 ⋅ 𝜒 is implicitly defined by the integrals

𝕀𝑔⋅𝜒[𝑓] = 𝕀𝜒[𝑔 ⋅ 𝑓]
= ∑

𝑥∈𝑋
𝜒({𝑥}) ⋅ (𝑔(𝑥) ⋅ 𝑓(𝑥))

= ∑
𝑥∈𝑋

(𝑔(𝑥) ⋅ 𝜒({𝑥})) ⋅ 𝑓(𝑥).

Consequently 𝑔 ⋅ 𝜒 can be implemented by simply scaling the element-wise allocations,

(𝑔 ⋅ 𝜒)({𝑥}) = 𝑔(𝑥) ⋅ 𝜒({𝑥}).
While this might have seemed obvious from the start, the machinery of measure-informed
integration allows us to prove that this intuitive definition is consistent with how measure
theory behaves more generally.

5.2 Integration on Real Lines

Frustratingly there are no universal strategies for directly evaluating measure-informed inte-
grals on uncountable spaces. Sometimes, however, the structure of an uncountable space allow
us to reduce measure-informed integrals to more feasible mathematical operations. In partic-
ular measure-informed integrals with respect to the Lebesgue measure on a real line can be
related to the familiar Riemann integral from calculus.

5.2.1 Lebesgue Verses Riemann

By definition the measure-informed integral of an indicator function is given by the measure
allocated to the defining subset,

𝕀𝜇[𝐼x] = 𝜇(x).
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On a real line (ℝ, ℬℝ) the Lebesgue measure allocated to any interval is just the distance
between the end points,

𝜆( [𝑥1, 𝑥2] ) = 𝑑(𝑥1, 𝑥2) = |𝑥2 − 𝑥1|.
Consequently the Lebesgue integral of an interval indicator function is given by

𝕀𝜆[𝐼[𝑥1,𝑥2]] = |𝑥2 − 𝑥1|.

That integral, however, also happens to be the area under the curve defined by the correspond-
ing indicator function (Figure 20a),

area = height ⋅ length
= 1 ⋅ |𝑥2 − 𝑥1|
= 𝕀𝜆[𝐼[𝑥1,𝑥2]].

This geometric coincidence also generalizes to simple functions. The area under the curve
defined by a simple function built from a single interval

𝑠(𝑥) = 𝜙 ⋅ 𝐼[𝑥1,𝑥2]

is just

area = height ⋅ length
= 𝜙 ⋅ |𝑥2 − 𝑥1|
= 𝜙 ⋅ 𝕀𝜆[𝐼[𝑥1,𝑥2]]
= 𝕀𝜆[𝜙 ⋅ 𝐼[𝑥1,𝑥2]]
= 𝕀𝜆[𝑠].

More generally the area under the curve defined by a simple function built from many inter-
vals

𝑠(𝑥) = ∑
𝑗

𝜙𝑗 ⋅ 𝐼[𝑥1,𝑗,𝑥2,𝑗]

is built up from rectangles defined by each component,

area = ∑
𝑗

area𝑗

= ∑
𝑗

height𝑗 ⋅ length𝑗

= ∑
𝑗

𝜙𝑗 ⋅ |𝑥2,𝑗 − 𝑥1,𝑗|

= ∑
𝑗

𝕀𝜆[𝜙𝑗 ⋅ 𝐼[𝑥1,𝑗,𝑥2,𝑗]].
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By linearity, however, this is just the measure-informed integral of the simple function itself
(Figure 20b)

area = ∑
𝑗

𝕀𝜆[𝜙𝑗 ⋅ 𝐼[𝑥1,𝑗,𝑥2,𝑗]]

= 𝕀𝜆[∑
𝑗

𝜙𝑗 ⋅ 𝐼[𝑥1,𝑗,𝑥2,𝑗]]

= 𝕀𝜆[𝑠].

Iλ[I[x1,x2]]

[x1, x2]

0

1

I[x1,x2](x)

x

(a)

Iλ[φ1 · I[x1,1,x2,1]]

Iλ[φ2 · I[x1,2,x2,2]]

Iλ[φ3 · I[x1,3,x2,3]]

0

s(x)

x

(b)

Figure 20: Integrals of simple functions with respect to the Lebesgue measure are intimately
related to the area under the curve defined by simple functions. (a) The area under
the curve defined by an interval indicator function is equal to the height, 1, times
the length of the interval. That, however, is just equal to the Lebesgue integral
of the indicator function itself. (b) The area under the curve defined by interval
simple functions is built up from the area of rectangles defined by each component
indicator function. The total area is equal to the Lebesgue integral of the simple
function itself.

Decomposing the positive and negative parts of a measurable, real-valued function into simple
functions pushes this relationship further. On one hand we can use the decomposition to define
Lebesgue integrals, and on the other we can use it to compute the area under the curve defined
by any sufficiently nice function (Figure 21a).

We can also use classic calculus to compute the same area under the curve. A Riemann
integral is defined by partitioning the real line into equally-sized intervals and then constructing
rectangles from the height of the integrand at the end of each interval. As the intervals length
𝛿 becomes smaller and smaller the sum of the rectangle areas converges to the area under the
curve (Figure 21b),

∫ d𝑥 𝑓(𝑥) = lim
𝛿→0

∞
∑

𝑛=−∞
𝛿 ⋅ 𝑓(𝑥0 + 𝑛 ⋅ 𝛿).
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Figure 21: On a real line 𝑋 = ℝ integration with respect to the Lebesgue measure and Riemann
integration both quantify the area under a curve defined by a sufficiently nice real-
valued function 𝑓 ∶ ℝ → ℝ. (a) As we add more components the Lebesgue integral of
a simple function converges to the Lebesgue integral of 𝑓 . At the same time the sum
of the rectangular areas defined by each component indicator function converges to
the area under the curve defined by 𝑓 . (b) Riemann integration computes the
area under the curve as a sum of increasingly narrow rectangular areas, only the
rectangles are stacked horizontally instead of vertically.
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Geometrically Lebesgue integration computes the area under a curve by summing over verti-
cally stacked rectangles while Riemann integration computes the area by summing over hori-
zontally stacked rectangles. Riemann integration doesn’t always result in a well-defined answer,
but when it does we can use these two methods for computing the area under a curve to relate
integrals with respect to the Lebesgue measure to classic integration!

More formally for any measurable and 𝜆-integrable real-valued function 𝑓 ∶ ℝ → ℝ we have

𝕀𝜆[𝑓] = ∫ 𝜆(d𝑥) 𝑓(𝑥)

= ∫
∞

−∞
d𝑥 𝑓(𝑥)

so long as the Riemann integral ∫ d𝑥 𝑓(𝑥) is well-defined. In other words Lebesgue integration
on the real line completely generalizes Riemann integration; measure-informed integration then
generalizes Lebesgue integration on the real line to arbitrary meaures and spaces.

This particular equivalence is the motivation for the many alternative notations that we dis-
cussed in Section 2.4. In general the integral signs in those notations do not correspond to the
Riemann integral of calculus, but in the special case of the Lebesgue measure over a real line
they do!

5.2.2 Practical Consequences

When a real-valued function has a well-defined Riemann integral then we can apply the tools
of calculus to evaluate Lebesgue integrals. The exceptional Riemann integrals that can be
evaluated analytically allow us to compute the corresponding Lebesgue integrals exactly. More
generally we can use to numerical integration techniques to approximate the Riemann integrals,
and hence approximately evaluate Lebesgue integrals.

For example the measure-informed integral of an interval indicator function is given by

𝕀𝜆[𝐼[𝑥1,𝑥2]] = ∫
∞

−∞
d𝑥 𝐼[𝑥1,𝑥2](𝑥)

= ∫
𝑥2

𝑥1

d𝑥

= 𝑥2 − 𝑥1,

consistent with the definition of the Lebesgue measure. Note that the correct, positive answer
required that we integrate from the lower end of the interval to the upper end. Changing the
order defines the same interval, and hence the same Lebesgue measure allocation, but it flips
the sign of the Riemann integral. In order to properly relate Lebesgue integrals to Riemann
integrals we have to fix the orientation of the intervals.
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Similarly the mean of a Lebesgue measure would by given by the integral of the identity
function,

𝕀𝜆[𝜄] = ∫
∞

−∞
d𝑥 𝜄(𝑥)

= ∫
∞

−∞
d𝑥 𝑥

= 1
2𝑥2∣

∞

−∞
= ∞ − ∞.

Unfortunately this result is ill-posed because ∞ minus itself is consistent with every value on
the real line. Had we been a bit more careful, however, this would not have been surprising.
The problem is that the identify function is not Lebesgue-integrable,

𝕀𝜆[|𝜄|] = ∫
∞

−∞
d𝑥 |𝜄(𝑥)|

= 2 ∫
∞

0
d𝑥 𝑥

= 𝑥2∣∞0
= ∞!

Consequently the Lebesgue measure does not have any well-defined moments.

Likewise the scaling of the Lebesgue measure by a positive function 𝑔 ∶ 𝑋 → ℝ+ can be
implemented with the integrals

𝕀𝑔⋅𝜆[𝑓] = 𝕀𝜆[𝑔 ⋅ 𝑓]

= ∫
+∞

−∞
d𝑥 𝑔(𝑥) ⋅ 𝑓(𝑥).

In particular the measure allocated to any interval becomes

(𝑔 ⋅ 𝜆)( [𝑥1, 𝑥2] ) = 𝕀𝑔⋅𝜆[𝐼[𝑥1,𝑥2]]
= 𝕀𝜆[𝑔 ⋅ 𝐼[𝑥1,𝑥2]]

= ∫
+∞

−∞
d𝑥 𝑔(𝑥) ⋅ 𝐼[𝑥1,𝑥2](𝑥)

= ∫
𝑥2

𝑥1

d𝑥 𝑔(𝑥).

By appropriately scaling the Lebesgue measure in this way we can implement all kinds of
measures over a real line, including most probability distributions of practical interest. We’ll
formalize this procedure in the next chapter.
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6 Conclusion

Measure-informed integrals are the main way that we interact with measures, both in theory
and in practice. Equivalently expectation values are the main way that we can probe the
behavior of probability distributions. Indeed a recurring theme in applying probability theory
in practice will be the principled computation of expectation values for relevant expectands.

In the next chapter we’ll learn how to extend the exceptionally explicit integrals with respect to
Lebesgue measures to a much larger class of measures, including many probability distributions.
Later on we’ll learn some powerful sampling techniques for directly estimating expectation
values for general probability distributions.
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