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As we saw in the last chapter, expectation values allow us to interrogate the behaviors of
the probability distributions that we’ll encounter in practical applications. At least, that
is, in theory. In practice the expectation values of most probability distributions cannot be
computed directly. Indeed integrals with respect to only a few exceptional measures can be
computed directly at all.

By scaling those exceptional measures, however, we can sometimes use measure-informed in-
tegrals to indirectly compute expectation values from relevant probability distributions. If
we can engineer scalings that reproduce expectation values of interest then we can use this
indirect approach to implement probability theory in practice.

In this chapter we will formalize this procedure, identifying exactly when we can scale a given
measure to reproduce the expectation values of a target probability distribution and how we
can use scalings to specify new probability distributions in the context of a given measure. We
will then investigate the detailed application of the method on discrete and real probability
spaces.

1 Density Functions

Frustratingly we cannot translate integrals from one arbitrary measure to another. To avoid
subtle mathematical inconsistencies we have to restrict our consideration to measures that are
compatible with each other. In this section we will first motivate what kind of compatibility
we might need on finite spaces before formalizing the compatibility requirements, and the
systematic translation of integrals, on general spaces.

1.1 Finite Spaces

Let’s start by considering a finite measurable space (𝑋, 2𝑋) and two measures, 𝜇 and 𝜈. Given
a real-valued function 𝑓 ∶ 𝑋 → ℝ we can construct an integral with respect to both 𝜇,

𝕀𝜇[𝑓] = ∑
𝑥∈𝑋

𝜇({𝑥}) ⋅ 𝑓(𝑥),
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and 𝜈,
𝕀𝜈[𝑓] = ∑

𝑥∈𝑋
𝜈({𝑥}) ⋅ 𝑓(𝑥).

To simplify the initial construction let’s first assume that all of the atomic allocations are
non-zero and finite,

0 < 𝜇({𝑥}) < ∞
0 < 𝜈({𝑥}) < ∞

for all 𝑥 ∈ 𝑋; this allow us to multiply and divide by the atomic allocations without running
into ill-defined results. In particular we will always have

𝜈({𝑥})
𝜈({𝑥}) = 1

so that we can write the 𝜇 integral as

𝕀𝜇[𝑓] = ∑
𝑥∈𝑋

𝜇({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

𝜇({𝑥}) ⋅ 1 ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

𝜇({𝑥}) ⋅ 𝜈({𝑥})
𝜈({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

𝜈({𝑥}) ⋅ 𝜇({𝑥})
𝜈({𝑥}) ⋅ 𝑓(𝑥).

Now if we define a function that maps each element to the ratio of the atomic allocations,

𝑟 ∶ 𝑋 → ℝ+

𝑥 ↦ 𝜇({𝑥})
𝜈({𝑥}) ,

then we can write the 𝜇 integral as

𝕀𝜇[𝑓] = ∑
𝑥∈𝑋

𝜈({𝑥}) ⋅ 𝜇({𝑥})
𝜈({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

𝜈({𝑥}) ⋅ 𝑟(𝑥) ⋅ 𝑓(𝑥)

= 𝕀𝜈[𝑟 ⋅ 𝑓].

In words the integral of any real-valued function 𝑓 with respect to 𝜇 is equal to the integral
of the modified function 𝑟 ⋅ 𝑓 with respect to 𝜈.
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More generally this result doesn’t actually require that the ratio of atomic allocations

𝜈({𝑥})
𝜈({𝑥})

is well-defined for all 𝑥 ∈ 𝑋. We need it to be well-defined for only the terms where 𝜇({𝑥}) >
0.

To see why let z𝜇 denote the subset of elements that are allocated zero measure,

z𝜇 = {𝑥 ∈ 𝑋 ∣ 𝜇({𝑥}) = 0},

with n𝜇 denoting the complementary subset of elements that are allocated non-zero measure,

n𝜇 = {𝑥 ∈ 𝑋 ∣ 𝜇({𝑥}) > 0}.

Using these subsets we can write any integral with respect to 𝜇 as

𝕀𝜇[𝑓] = ∑
𝑥∈𝑋

𝜇({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈z𝜇

𝜇({𝑥}) ⋅ 𝑓(𝑥) + ∑
𝑥∈n𝜇

𝜇({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈z𝜇

0 ⋅ 𝑓(𝑥) + ∑
𝑥∈n𝜇

𝜇({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈n𝜇

𝜇({𝑥}) ⋅ 𝑓(𝑥).

At the same time we can write the integral of the modified integrand with respect to 𝜈 as

𝕀𝜈[𝑟 ⋅ 𝑓] = ∑
𝑥∈𝑋

𝜈({𝑥}) ⋅ 𝑟(𝑥) ⋅ 𝑓(𝑥)

= ∑
𝑥∈z𝜈

𝜈({𝑥}) ⋅ 𝑟(𝑥) ⋅ 𝑓(𝑥) + ∑
𝑥∈n𝜈

𝜈({𝑥}) ⋅ 𝑟(𝑥) ⋅ 𝑓(𝑥)

= ∑
𝑥∈z𝜈

0 ⋅ 𝑟(𝑥) ⋅ 𝑓(𝑥) + ∑
𝑥∈n𝜈

𝜈({𝑥}) ⋅ 𝑟(𝑥) ⋅ 𝑓(𝑥)

= ∑
𝑥∈n𝜈

𝜈({𝑥}) ⋅ 𝑟(𝑥) ⋅ 𝑓(𝑥)

= ∑
𝑥∈n𝜈

𝜈({𝑥}) ⋅ 𝜇{𝑥}
𝜈{𝑥} ⋅ 𝑓(𝑥)

= ∑
𝑥∈n𝜈

𝜇({𝑥}) ⋅ 𝑓(𝑥).

In general n𝜇 and n𝜈 might contain different elements, in which case the two sums will not be
equal,

𝕀𝜇[𝑓] ≠ 𝕀𝜈 [𝑟 ⋅ 𝑓]
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We have equality only when 𝜇({𝑥}) = 0 every time that 𝜈({𝑥}) = 0. In other words the two
integrals will be equal only when

z𝜈 ⊆ z𝜇.
Ultimately we can translate 𝜇 integrals into 𝜈 integrals only when all atomic allocations are
finite and the null allocations of the two measures are consistent with each other (Figure 1).

� ♣ ♦ ♥ ♠

ν({x})

� ♣ ♦ ♥ ♠

µ({x})

Figure 1: The atomic allocations from one discrete measure cannot be consistently scaled into
the atomic allocations of any other discrete measure. For example there is no real
number that will scale the finite allocation 𝜈({♣}) into the infinite allocation 𝜇({♣}).
Similarly there is no real number that will consistently scale the zero allocation
𝜈({♡}) into the non-zero allocation 𝜇({♡}). Consistent scaling requires that all of
the atomic allocations are finite and that the atomic allocations of the initial measure
𝜈 are zero only when the atomic allocations of the second measure 𝜇 are also zero.

Similarly we can translate 𝜈 integrals into 𝜇 integrals only when the atomic allocations are
finite and

z𝜇 ⊆ z𝜈.
Importantly these two conditions are not symmetric: we can translate back and forth between
𝜇 and 𝜈 integrals only when the null allocations are the same,

z𝜇 = z𝜈.

1.2 General Spaces

Translating integrals between more general measure spaces requires a generalization of the
atomic allocation conditions that we derived in the previous section to arbitrary allocations.
Unsurprisingly this generalization will take a bit more care.

In this section we’ll assume a measurable space (𝑋, 𝒳) and two measures 𝜇 ∶ 𝒳 → [0, ∞] and
𝜈 ∶ 𝒳 → [0, ∞].
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1.2.1 𝜎-Finite Measures

Avoiding infinite atomic allocations is necessary on general measure spaces, but it is not suf-
ficient for translating integrals from one measure to another. To avoid any mathematical
inconsistencies we also need to limit exactly which subsets can be allocated infinite measure.
Intuitively we need to avoid infinite “local” allocations even if the total measure is infinite.

To formalize this intuition we will first need to divide the ambient space into disjoint subsets
that probe that local structure. A partition of 𝑋 is any collection of subsets,

𝒫 = {x1, … , x𝑖, …},

that are non-empty,
x𝑖 ≠ ∅,

mutually disjoint,
x𝑖 ∩ x𝑖′≠𝑖 = ∅,

and cover the entire space,
∪𝑖x𝑖 = 𝑋.

When working with measures we need to restrict attention to measurable partitions, which
contain only measurable subsets, and countable partitions, which contain only a countable
number of subsets.

For example the full set 𝑋 by itself always defines a partition, as does the collection of atomic
subsets. The collection of atomic subsets, however, will not always define a countable partition.
On ordered metric spaces, such as real lines, measurable and countable partitions built up from
intervals of constant length are particularly natural.

In general we can partition a measurable space in many different ways; some partitions will
divide the space up into smaller subsets than others. If every subset in one measurable partition
𝒫 is encapsulated by a subset in another measurable partition 𝒫′, so that we can construct 𝒫
by breaking up the subsets in 𝒫′, then we say that 𝒫 is a refinement of 𝒫′. The more refined
a measurable partition is the more sensitively it will be able to probe the “local” structure of
a measure (Figure 2).

Every partition is a refinement of the partition defined by the full set 𝑋 alone, making it
the crudest possible partition. At the same time because the partition defined by the atomic
subsets is a refinement of every other partition it is finest possible partition. Both of these
extreme partitions are typically measurable, but the atomic partition will be countable on only
countable spaces.

When the total measure is infinite then the allocations to the subsets in a crude measurable
partition might also be infinite. If we break up those subsets into finer and finer pieces, however,
then the infinite allocations might spread out into finite allocations. When we can construct
a fine enough measurable partition such that all of the subset allocations are finite we will
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Figure 2: Every real line can be partitioned into half-open intervals of constant length. The
narrower the intervals the more refined the partition will be, and the more sensitive
the individual subsets will to the local structure of a measure. Decomposing a real
line all the way into atomic elements results in a valid partition, but not a countable
partition.

always able to avoid infinity entirely by working with small enough subsets. Moreover if that
fine enough measurable partition is also countable then we will always be able to aggregate
those smaller-subset allocations into any general allocation.

More formally a measure 𝜇 is 𝜎-finite if we can construct at least one measurable and countable
partition where each subset is allocated only a finite measure,

𝜇(x𝑖) < ∞

for all x𝑖 ∈ 𝒫.

Every finite measure, including every probability distribution, is 𝜎-finite because we can always
take the trivial partition 𝒫 = {𝑋} with

𝜇(𝑋) < ∞.

On the other hand only exceptional infinite measures are also 𝜎-finite. For example we can
show that every counting measure 𝜒 is 𝜎-finite by employing a countable atomic partition,

𝒫 = {{𝑥} ∣ 𝑥 ∈ 𝑋},

with
𝜒(x) = 1 < ∞
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for all x ∈ 𝒫. Similarly we can show that every Lebesgue measure 𝜆 is 𝜎-finite by partitioning
a real line into intervals of constant length 𝐿,

𝒫 = {(𝐿 ⋅ 𝑛, 𝐿 ⋅ (𝑛 + 1)] ∣ 𝑛 ∈ … , −1, 0, 1, …},

with
𝜆(x) = 𝐿 < ∞

for all x ∈ 𝒫. Even though the local interval allocations are finite individually they aggregate
into the infinite total Lebesgue measure.

One immediate obstruction to 𝜎-finiteness is the allocation of infinite measure to a single
atomic subset. Because we can’t break an atomic subset down any further there’s no way to
diffuse that infinite allocation into something finite. Fortunately this extreme behavior rarely
if ever show up in practical applications.

Every application that we will consider in this book will only ever use 𝜎-finite measures.

1.2.2 Absolute Continuity

On finite spaces the compatibility between two measures was determined by the overlap of
the null atomic subsets. On more general spaces we have to consider the overlap of all null
subsets.

When every 𝜈-null subset is a 𝜇-null subset,

𝒳𝜈=0 ⊆ 𝒳𝜇=0

we can say that 𝜇 is absolutely continuous with respect to 𝜈 and write

𝜇 ≪ 𝜈.

Equivalently we can say that 𝜈 dominates 𝜇.

Because absolute continuity is defined by the null subsets, and not the precise allocations
across non-null subsets, understanding of the null subsets alone allows us to characterize how
compatible two measures are with each other. In particular when a collection of measures all
share the same null subsets then each measure will be absolutely continuous with respect to
every other measure, regardless of their idiosyncratic behaviors.

For example on a discrete space every measure with non-zero atomic allocations is absolutely
continuous with respect to every other measure with non-zero atomic allocations. Moreover
Lebesgue meaures defined with respect to different metrics are always absolutely continuous
with each other.

8



1.2.3 Radon-Nikodym Derivatives

With 𝜎-finiteness and absolute continuity established we are now ready to define the most
general circumstances under which we can translate integrals from one measure to another.

If 𝜇 and 𝜈 are two 𝜎-finite measures on (𝑋, 𝒳) and 𝜇 is absolutely continuous with respect to
𝜈,

𝜇 ≪ 𝜈,
then at least one 𝒳-measurable, positive real-valued function

d𝜇
d𝜈 ∶ 𝑋 → ℝ+

exists such that
𝕀𝜇[𝑓] = 𝕀𝜈 [d𝜇

d𝜈 ⋅ 𝑓]

for every 𝒳-measurable, 𝜇-integrable, real-valued function 𝑓 ∶ 𝑋 → ℝ.

Any such function d𝜇/d𝜈 that translates 𝜇 integrals into 𝜈 integrals is known as a Radon-
Nikodym derivative of 𝜇 with respect to 𝜈. In this case 𝜇 is denoted the target measure
and 𝜈 is denoted the reference measure.

Because Radon-Nikodym derivatives are defined by measure-informed integrals they are not,
in general, unique. Modifying the outputs of a Radon-Nikodym derivative on a 𝜈-null subset
of inputs results in the same 𝜈 integrals, and hence another valid Radon-Nikodym derivative.
In practice we can usually restrict our consideration to Radon-Nikodym derivatives that also
happen to be continuous or even smooth. These structured Radon-Nikodym derivatives are
typically unique for each 𝜇 and 𝜈, and we don’t lose any generality by ignoring the others
provided that we never try to interpret these functions outside of the shadow of an integral!

For example the unit function

𝑢 ∶ 𝑋 → ℝ+

𝑥 ↦ 1
is one possible Radon-Nikodym derivative for any measure with respect to itself,

d𝜈
d𝜈

𝜈= 𝑢.

At the same time any function that deviates from the unit function only on 𝜈-null subsets is
also a valid Radon-Nikodym derivative for 𝜈 with respect to itself. If 𝑋 = ℝ, however, then
the unit function is the only continuous Radon-Nikodym derivative.

Using the local scaling notation that we introduced in Chapter 5 we can also express the
relationship between two compatible measures and the Radon-Nikodym derivative that links
them together as

𝜇 = d𝜇
d𝜈 ⋅ 𝜈.

9
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Again this is just shorthand for the integral relationships

𝕀𝜇[𝑓] = 𝕀𝜈 [d𝜇
d𝜈 ⋅ 𝑓] .

1.2.4 Interpreting Radon-Nikodym Derivatives

One way to build intuition for Radon-Nikodym derivatives is to consider the integral of indi-
cator functions. For any measurable subset x ∈ 𝒳 we have

𝜇(x) = 𝕀𝜇[𝐼x]

= 𝕀𝜈 [d𝜇
d𝜈 ⋅ 𝐼x] .

If
d𝜇/d𝜈(𝑥) > 1

for almost all points 𝑥 ∈ x – remember that we always have to excuse deviant behavior over
the null subsets of 𝜈 – then we will also have

d𝜇
d𝜈 (𝑥) ⋅ 𝐼x(𝑥) > 𝐼x(𝑥)

for almost all 𝑥 ∈ 𝑋. This implies that

𝜇(x) = 𝕀𝜈 [d𝜇
d𝜈 ⋅ 𝐼x]

> 𝕀𝜈 [𝐼x]
> 𝜈(x),

or
𝜇(x) > 𝜈(x).

In other words if
d𝜇/d𝜈(𝑥) > 1

across some subset of the ambient space then 𝜇 will allocate more measure there than 𝜈. The
larger the Radon-Nikodym derivative is the more excessive the 𝜇 allocation will be. Similarly
if

d𝜇/d𝜈(𝑥) < 1
across some subset then 𝜇 will allocate less measure there than 𝜈. At the extreme any mea-
surable collection of points with

d𝜇/d𝜈(𝑥) 𝜈= 0
always defines a 𝜇-null subset. In between if

d𝜇/d𝜈(𝑥) 𝜈= 1
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across a subset then 𝜇 and 𝜈 will allocate the same measure to that subset.

Consequently we can interpret a Radon-Nikodym derivative as quantifying how the allocations
of 𝜇 are locally enhanced or suppressed relative to the allocations of 𝜈. By integrating indicator
functions we aggregate these local warpings into non-local changes in the subset allocations.

A common physical analogy is to interpret the reference measure 𝜈 as defining a sense of
volume across the ambient space. The more measure 𝜈 allocates to a given subset the more
background volume is spanned by that subset. If we analogize the measure allocated by 𝜇 to
a physical mass then Radon-Nikodym derivatives become density functions that quantify
how strongly mass concentrates within any given volume.

Personally I’ve always found the term “Radon-Nikodym derivative” to be aesthetically pleasing
– it sounds like a term straight out of science fiction to me – but this density function analogy is
typically much more accessible. Because of that I will use the term “density function” instead
of “Radon-Nikodym derivative” as much as possible.

1.2.5 Operator Perspective

Speaking of terminology, why do we call a Radon-Nikodym derivative a “derivative” in the first
place? It turns out that mathematically Radon-Nikodym derivatives do satisfy the properties
of formal derivatives, but the theory needed to demonstrate that is pretty elaborate. In this
section we will instead investigate some of the more superficial similarities between Radon-
Nikodym derivative and the familiar derivatives from calculus.

Recall that in one-dimensional calculus differentiation is an operation that converts a smooth
function 𝑓 ∶ ℝ → ℝ into a new function

d𝑓
d𝑥 ∶ ℝ → ℝ.

This operation is linear,
d

d𝑥 (𝛼 𝑓 + 𝛽 𝑔) = 𝛼 d𝑓
d𝑥 + 𝛽 d𝑔

d𝑥,
and satisfies a chain rule,

d(𝑔 ∘ 𝑓)
d𝑥 (𝑥) = d𝑔

d𝑦 (𝑓(𝑥))d𝑓
d𝑥(𝑥)

for any two functions 𝑓 ∶ 𝑥 ↦ 𝑦 and 𝑔 ∶ 𝑦 ↦ 𝑧.

The output of the derivative function at the point 𝑥 ∈ ℝ,

d𝑓
d𝑥(𝑥),

quantifies how quickly 𝑓 changes at that input (Figure 3). If

d𝑓
d𝑥(𝑥) > 0
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then 𝑓 is increasing at 𝑥, if
d𝑓
d𝑥(𝑥) < 0

then 𝑓 is decreasing at 𝑥, and if
d𝑓
d𝑥(𝑥) = 0

then 𝑓 is constant at 𝑥.

x1 x2

f(x)

x

0

x1 x2

df
dx (x)

x

Figure 3: The derivative d𝑓/d𝑥 of a function 𝑓 is itself a function that quantifies how 𝑓 changes
at each point 𝑥 ∈ ℝ. Because 𝑓 is increasing at 𝑥1 the derivative is positive there,
d𝑓/d𝑥(𝑥1) > 0. Similarly because 𝑓 is decreasing at 𝑥2 the derivative is negative
there. We can also interpret the derivative as quantifying how much 𝑓 changes
relative to a constant function. Because d𝑓/d𝑥(𝑥1) > 0 the function 𝑓 is increasing
faster than the constant function at 𝑥1. At the same time because d𝑓/d𝑥(𝑥2) < 0
the function 𝑓 is increasing more slowly than the constant function at 𝑥2.

Equivalently we can interpret a derivative function as quantifying how much the initial function
changes relative to a constant function. If

d𝑓
d𝑥(𝑥) > 0

then 𝑓 is increasing faster than a constant function at 𝑥, if

d𝑓
d𝑥(𝑥) < 0

then 𝑓 is increasing slower than a constant function at 𝑥, and if

d𝑓
d𝑥(𝑥) = 0

then 𝑓 is increasing at the same rate as a constant function at 𝑥. In other words we can
interpret the derivative as an operator that gives an output function that quantifies how much
the input function changes relative to some reference behavior.
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Similarly we can interpret Radon-Nikodym derivatives as the output of an operator that gives
output functions that quantify how much an input measure changes relative to some reference
measure. Even more this operator is linear and satisfies a chain rule.

To formalize this similarity a bit more let’s use 𝑀(𝑋, 𝒳) to denote the collection of all mea-
sures that we can define over the measurable space (𝑋, 𝒳) and 𝐶+(𝑋, 𝒳, 𝜇) to denote the
collection of all 𝒳-measurable functions from 𝑋 to ℝ+. We can then define Radon-Nikodym
differentiation as a mapping

d
d𝜈 ∶ 𝑀(𝑋, 𝒳) → 𝐶+(𝑋, 𝒳)

𝜇 ↦ d𝜇
d𝜈

that takes an input measure 𝜇 to an output function

d𝜇
d𝜈 ∶ 𝑋 → ℝ+

that captures how 𝜇 varies relative to 𝜈.

Admittedly I’m being a bit mathematically sloppy here because Radon-Nikodym derivatives
are defined only up to 𝜈-null subsets; technically this mapping doesn’t yield a single function
but rather a collection of all functions that are equal 𝜈-almost everywhere. In order to achieve
a unique outptu function we need to introduce additional constraints, such as continuity or
even smoothness. This sloppy notation, however, does allow us to investigate many of the
useful properties of the operation.

For example Radon-Nikodym differentiation is linear. If we define a linear combination of
measures by the allocations

(𝛼 ⋅ 𝜇 + 𝛽 ⋅ 𝜈)(x) = 𝛼 ⋅ 𝜇(x) + 𝛽 ⋅ 𝜈(x)

then
d

d𝜆(𝛼 ⋅ 𝜇 + 𝛽 ⋅ 𝜈) 𝜈= 𝛼 ⋅ d𝜇
d𝜆 + 𝛽 ⋅ d𝜈

d𝜆
whenever 𝜇 and 𝜈 are both absolutely continuous with respect to 𝜆,

𝒳𝜆=0 ⊆ 𝒳𝜇=0 ∩ 𝒳𝜈=0.

Note that to be technically correct, the best kind of correct, equalities like these hold only up
to 𝜈-null subsets.

Similarly Radon-Nikodym differentiation satisfies a chain rule. If 𝜇 is absolutely continuous
with respect to 𝜆 and 𝜆 is absolutely continuous with respect to 𝜈,

𝒳𝜇=0 ⊆ 𝒳𝜆=0 ⊆ 𝒳𝜈=0,
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then
d𝜇
d𝜈

𝜈= d𝜇
d𝜆 ⋅ d𝜆

d𝜈 .
Again we have to be careful to acknowledge that this “equality” holds only up to 𝜈-null
subsets.

The Radon-Nikodym chain rule can be particularly useful in practice when we’re interested in
comparing two measures 𝜇 and 𝜈 to each other but a third measure 𝜆 is a more convenient
reference measure. For example consider the simplified case where 𝜇, 𝜈, and 𝜆 all share the
same null subsets,

𝒳𝜇=0 = 𝒳𝜈=0 = 𝒳𝜆=0 ≡ 𝒳0,
and hence are all absolutely continuous with respect to each other. In this case all of the
Radon-Nikodym derivatives between these measures are almost everywhere non-zero and we
can write

1 𝜈= d𝜈
d𝜈 (𝑥)

1 𝜈= d𝜈
d𝜆(𝑥) ⋅ d𝜆

d𝜈 (𝑥)
or

d𝜆
d𝜈 (𝑥) 𝜈= 1

d𝜈
d𝜆(𝑥)

up to the common null subsets.

Consequently we can write the Radon-Nikodym derivative between 𝜇 and 𝜈 as a ratio of the
Radon-Nikodym derivatives with respect to 𝜆,

d𝜇
d𝜈 (𝑥) 𝜈= d𝜇

d𝜆(𝑥) ⋅ d𝜆
d𝜈 (𝑥)

𝜈= d𝜇
d𝜆(𝑥) ⋅ 1

d𝜈
d𝜆(𝑥)

𝜈=
d𝜇
d𝜆(𝑥)
d𝜈
d𝜆(𝑥) .

In this way we can directly compare the behaviors of 𝜇 and 𝜈 to each other using only the
more convenient Radon-Nikodym derivatives.

2 Specifying Probability Distributions With Density Functions

The initial use case for density functions, née Radon-Nikodym derivatives, requires the selection
of a target measure and a reference measure 𝜈. In this setting we can translate implicit integrals
with respect to the target measure to explicit integrals with respect to the reference measure,

𝕀𝜇[𝑓] = 𝕀𝜈 [d𝜋
d𝜈 ⋅ 𝑓] .
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This construction, however, can also be reversed. Given a reference measure, any measurable,
positive-real valued function implicitly defines a target measure without having to directly
specify any subset allocations.

Consider, for example, a measurable space (𝑋, 𝒳) and a convenient, 𝜎-finite measure 𝜈. Every
non-negative, 𝒳-measurable function 𝑚 ∶ 𝑋 → 𝑅+ implicitly defines a measure 𝜇 with the
measure-informed integrals

𝕀𝜇[𝑓] = 𝕀𝜈 [𝑚 ⋅ 𝑓] .

The normalization of a density function is defined by its integral with respect to the reference
measure, 𝕀𝜈[𝑚]. If

𝕀𝜈[𝑚] = 1
then the total induced measure becomes

𝜇(𝑋) = 𝕀𝜇[𝐼𝑋]
= 𝕀𝜈[𝑚 ⋅ 𝐼𝑋]
= 𝕀𝜈[𝑚]
= 1.

Consequently a properly normalized density function defines not just a measure but a proba-
bility distribution.

In other words every non-negative, 𝒳-measurable function 𝑝 ∶ 𝑋 → 𝑅+ with unit normaliza-
tion, 𝕀𝜈[𝑝] = 1, implicitly defines a probability distribution 𝜋 with the expectation values

𝔼𝜋[𝑓] = 𝕀𝜈 [𝑝 ⋅ 𝑓] .

Because we will be working with mostly probability distributions in practice, we will be working
with mostly these probability density functions.

Note that, while the probabilities given by evaluating a probability distribution can take only
real values between zero and one, the probability densities given by evaluating a probability
density function can take any non-negative real value. Probability densities and probabilities
are distinct and should not be confused with each other!

In practice working with point-wise functions is much easier than working with subset-wise
functions. For example when the ambient space is low-dimensional we can visualize point-wise
functional behavior directly, allowing density functions to not define probability distributions
but also communicate their behaviors. We’ll explore this latter feature in the context of
Lebesgue reference measures in Section 4.3.

This is not to say that probability density functions are not without their limitations. In
particular probability density functions are defined only relative to the given reference mea-
sure. If the reference measure is at all ambiguous then a density function will not completely
determine a probability distribution! At the same time if the reference measure every changes
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then probability density functions will also have to change if we want them to represent the
same probability distributions.

We will use probability density functions to define relevant probability distributions almost
exclusively in this book. In the cases where we start with a probability distribution 𝜋 and
reference measure 𝜈 then I will use the notation

d𝜋
d𝜈

for the corresponding probability density function. This notation is both compact and explicit,
display all of the information needed to put the density function into context.

Most of the time, however, we don’t start with an explicit probability distribution but rather
a reference measure 𝜈 and a properly normalized function 𝑝 ∶ 𝑋 → ℝ+ to implicitly define a
probability distribution,

𝜋 = 𝑝 ⋅ 𝜈,
or, equivalently,

𝔼𝜋[𝑓] = 𝕀𝜈[𝑝 ⋅ 𝑓].
In these more common cases I will use Roman letters to denote probability density functions.
Whenever possible I will also match the Roman letter used to denote a probability density
function and the Greek letter used to denote the induced probability distribution.

The only limitation of this latter notational convention is that it doesn’t communicate the
underlying reference measure. Because of this it is not difficult to lose track of that reference
measure, especially when multiple reference measures might be relevant in a given applica-
tion.

Unfortunately this convention has also become standard in many fields, and it is nearly im-
possible to avoid in practice. To avoid any confusion when we encounter a probability density
function 𝑝 ∶ 𝑋 → ℝ+ we have to take care to consider what the accompanying reference
measure is.

3 Probability Density Functions on Discrete Measure Spaces

Now that we have defined probability density functions in full generality we can study how
they’re used in the kinds of spaces that often arise in practical applications. We’ll begin by
looking at probability density functions on discrete measure spaces.
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3.1 Probability Mass Functions

On discrete measurable spaces (𝑋, 2𝑋) we can always construct a uniform counting measure
that allocates a unit measure to each atomic subset,

𝜒({𝑥}) = 1.
Because a counting measure doesn’t have any null subsets it dominates every measure that
we could define on (𝑋, 2𝑋), making it a natural reference measure for any discrete probability
distribution. Moreover the lack of null subsets also means that density functions will always
be unique.

Following the steps we worked through in Section 1.1 we can derive an explicit result for
the probability density function defined by any probability distribution 𝜋 with respect to a
counting measure. Translating an expectation value to an integral informed by the counting
measure gives

𝔼𝜋[𝑓] = ∑
𝑥∈𝑋

𝜋({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

1 ⋅ 𝜋({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

𝜒({𝑥}) ⋅ 𝜋({𝑥}) ⋅ 𝑓(𝑥)

= ∑
𝑥∈𝑋

𝜒({𝑥}) ⋅ (𝜋({𝑥}) ⋅ 𝑓(𝑥))

= 𝕀𝜒[𝜋 ⋅ 𝑓],
where 𝜋 in the last term denotes a function maps each element of 𝑋 to its atomic allocation,

𝜋 ∶ 𝑋 → [0, ∞]
𝑥 ↦ 𝜋({𝑥}).

In other words the density of any probability distribution with respect to the counting measure
is just the corresponding probability mass function,

d𝜋
d𝜒(𝑥) = 𝜋(𝑥)!

Because of this association probability mass functions are also sometimes referred to as discrete
probability density functions.

Identifying probability mass functions with Radon-Nikodym derivatives not only formalizes
all of the more heuristic results that we’ve developed on countable spaces but also places
them within the context of the more general probability theory. For example when we use
the atomic allocations specified by a probability mass function to compute expectation values
we’re implicitly integrating with respect to a counting measure. Similarly when we visualize
a probability distribution by plotting the atomic allocations we’re communicating how much
the probability distribution warps the uniform allocations defined by the counting measure.
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3.2 The Poisson Family of Probability Mass Functions

To demonstrate the use of probability density functions on countable spaces let’s consider the
positive integers, (ℕ, 2ℕ). Assuming the counting measure we can specify an entire family of
probability distributions with the parametrized probability density function (Figure 4)

Poisson(𝑛; 𝜆) = 𝜆𝑛𝑒−𝜆

𝑛! ,

where 𝜆 ∈ ℝ+.
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Figure 4: For each value of the parameter 𝜆 the Poisson family Poisson(𝑛; 𝜆) defines a discrete
probability density function, and hence a probability distribution in the context
of a reference counting measure. As 𝜆 increases from (a) to (c) the probability
distributions concentrate are larger integers.

This family of probability mass functions, as well as the family of probability distributions
they implicitly define, is known as the Poisson family. If we fix 𝜆 then Poisson(𝑛; 𝜆) denotes
a Poisson probability mass function, and implicitly Poisson distribution.

Expectation values with respect to a Poisson distribution are given by explicit summations,

𝔼Poisson[𝑓; 𝜆] = 𝕀𝜒[Poisson(; 𝜆) ⋅ 𝑓]

=
∞

∑
𝑛=0

Poisson(𝑛; 𝜆) 𝑓(𝑛).

The sums for many common expectands can actually be worked out in closed form. I’ve
isolated those calculations in the Appendix and will simply state some of the more important
results here.
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For example the normalization of each Poisson probability mass function is unity,

Poisson(𝑋; 𝜆) = 𝔼Poisson[𝐼𝑋; 𝜆]
= 𝕀𝜒[Poisson(; 𝜆) ⋅ 𝐼𝑋]

=
∞

∑
𝑛=0

Poisson(𝑛; 𝜆) ⋅ 1

= 1,
as required.

Similarly the mean for each Poisson probability distribution is given by

𝕄(𝜆) = 𝔼Poisson[𝜄; 𝜆]
= 𝕀𝜒[Poisson(; 𝜆) ⋅ 𝜄]

=
∞

∑
𝑛=0

Poisson(𝑛; 𝜆) ⋅ 𝜄(𝑛)

= 𝜆.
Consequently the parameter 𝜆 moderates the centrality of probability distributions defined by
each Poisson mass functions (Figure 5).
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Figure 5: The positive real-valued parameter 𝜆 determines the centrality of each Poisson prob-
ability mass function, and hence each Poisson probability distribution. Recall that
even though the ambient space is discrete the mean will in general take on real
values.

A slightly longer calculation shows that the variance of each Poisson distribution is also equal
to 𝜆. As we increase the parameter 𝜆 the individual Poisson distributions not only shift to
larger values but also become more diffuse.
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The Poisson cumulative distribution functions

Π(𝑛) = Poisson([0, 𝑛]; 𝜆) =
𝑛

∑
𝑛′=0

Poisson(𝑛′; 𝜆)

can also be evaluated in closed form,

Π(𝑛) = Γ(𝑛 + 1, 𝜆)
Γ(𝑛 + 1) ,

where Γ(𝑥, 𝑦) is the incomplete Gamma function and Γ(𝑥) is the gamma function. Con-
veniently these two functions, if not the Poisson cumulative distribution function itself, are
implemented in most programming languages, making them straightforward to use in prac-
tice.

These cumulative distribution functions give us two ways to evaluate interval probabilities
(Figure 6). On one hand we can brute force an interval probability with direct summation,

Poisson( (𝑛1, 𝑛2] ; 𝜆) =
𝑛2

∑
𝑛′=𝑛1+1

Poisson(𝑛′; 𝜆).

On the other hand we can evaluate the cumulative distribution function at each boundary and
subtract,

Poisson( (𝑛1, 𝑛2] ; 𝜆)𝑓 = ΠPoisson(𝑛2) − ΠPoisson(𝑛1).

0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

(5, 9]

Poisson(x)

(a)

Π(5)

Π(9)

0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

(5, 9]

ΠPoisson(x)

(b)

Figure 6: The interval probabilities allocated by Poisson probability distributions can be com-
puted by (a) exhaustively summing over all of the points in an interval of (b) sub-
stracting the output of the cumulative distribution function at the interval bound-
aries.
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4 Probability Density Functions on Real Spaces

Having explored discrete measure spaces let’s consider our prototypical uncountable spaces,
the spaces of real numbers. On these spaces we don’t have heuristics on which we can fall
back, and the full machinery of Radon-Nikodym derivatives is needed to ensure consistent
results. On these spaces the Lebesgue measure serves as a natural reference measure and most
expectation values reduce not to summations but rather classic integrals.

4.1 Lebesgue Probability Density Functions

The metric structure of a real space makes Lebesgue measures particularly useful. In partic-
ular because Lebesgue measures are 𝜎-finite they serve as immediate candidates for reference
measures.

The only remaining obstruction to the construction of probability density functions is abso-
lute continuity. For practical considerations the most important Lebesgue null subsets are the
subsets consisting of only a countable number of points; any probability distribution that is
absolutely continuous with respect to the Lebesgue measure must also allocate zero probabil-
ity to atomic subsets and their countable unions. In theory there are other, more abstract,
null subsets that need to be accommodated but the atomic subsets are the most practically
relevant.

Given a particular 𝐷-dimensional real space, that is a particular rigid real space or particular
parameterization of a flexible real space, and a compatible a compatible probability distribution
𝜋 we can define a Lebesgue probability density function

d𝜋
d𝜆𝐷 ∶ ℝ𝐷 → ℝ+.

Alternatively any measurable, positive real-valued function

𝑝 ∶ ℝ𝐷 → ℝ+

that is appropriately normalized,

𝕀𝜆𝐷 [𝑝] = ∫ d𝐷𝑥 𝑝(𝑥1, … , 𝑥𝑑, … , 𝑥𝐷) = 1,

will implicitly specify a probability distribution. By construction these engineered probabil-
ity distributions will be absolutely continuous with respect to the defining Lebesgue measure,
allocating zero probability to every atomic subset. In practice almost every probability distri-
bution over real spaces that we will encounter in applied problems will be built up by scaling
the Lebesgue measure in this way.
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Given a one-dimensional Lebesgue probability density function we can compute the probability
allocated to any interval subset with an appropriately bounded integral,

𝜋( [𝑥1, 𝑥2] ) = 𝔼𝜋 [𝐼[𝑥1,𝑥2]]

= 𝕀𝜆 [d𝜋
d𝜆 ⋅ 𝐼[𝑥1,𝑥2]]

= ∫
+∞

−∞
d𝑥 d𝜋

d𝜆(𝑥) ⋅ 𝐼[𝑥1,𝑥2](𝑥)

= ∫
𝑥2

𝑥1

d𝑥 d𝜋
d𝜆(𝑥).

In other words interval probabilities are equal to the area under the curve defined by the
probability density function (Figure 7). For higher-dimensional real spaces subset probabili-
ties become volumes under the surfaces defined by the higher-dimensional probability density
functions.

x1 x2

π( [x1, x2] )

[x1, x2]

dπ
dλ (x)

x

(a)

x2

x

π(x)

x1

dπ
dλ2 (x1, x2)

(b)

Figure 7: Subset probabilities are derived from Lebesgue probability density functions through
classic integration. (a) One-dimensional interval probabilities are given by the area
under the curve defined by a one-dimensional Lebesgue probability density function.
(b) In higher-dimensions we have to compute the volume under the surface defined
by a Lebesgue probability density function.

When working with Lebesgue probability density functions in practice we have to be very
careful to account for which Lebesgue measure we’re using at any given time. Different real
spaces, or different parameterizations of a single flexible real space, will in general feature
different metrics which then give rise to different Lebesgue measures.

Because of this a fixed Lebesgue probability density function will define different probability
distributions on different real spaces. Equivalently in order to represent a fixed target proba-
bility distribution 𝜋 we need to use different Lebesgue probability density functions on every
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individual real space. Either way to avoid any ambiguity we need to clearly communicate
which Lebesgue measure we’re assuming.

In the next chapter we’ll learn how to transform measures from one space to another. This
will allow us to relate the Lebesgue measures, and the corresponding Lebesgue probability
density functions, from one real space to another, or equivalently from one parameterization
of a flexible real space to another.

4.2 Abusing The Equals Sign

As with any Radon-Nikodym derivative, Lebesgue probability density functions are not unique.
Any two probability density functions that differ only on countable subsets of input points
will specify exactly the same probability distribution. Because of this we have to be careful
whenever we’re comparing probability density functions to each other.

For example if two probability distributions over ℝ are equal to each other,

𝜋 = 𝜌,

then the expectation of every sufficiently well-behaved expectand 𝑓 will be the same,

∫
+∞

−∞
d𝑥 d𝜋

d𝜆(𝑥) 𝑓(𝑥) = ∫
+∞

−∞
d𝑥 d𝜌

d𝜆(𝑥) 𝑓(𝑥)

This does not, however, imply that the two probability density functions are equal to each
other,

d𝜋
d𝜆(𝑥) = d𝜌

d𝜆(𝑥)

at every input point 𝑥 ∈ ℝ. Rather they can deviate from each other on any Lebesgue null
subset (Figure 8),

d𝜋
d𝜆(𝑥) 𝜆= d𝜌

d𝜆.

Most references take this subtlety for granted, abusing the equals sign by writing

d𝜋
d𝜆 = d𝜌

d𝜆
to mean that

∫
+∞

−∞
d𝑥 d𝜋

d𝜆(𝑥) 𝑓(𝑥) = ∫
+∞

−∞
d𝑥 d𝜌

d𝜆(𝑥) 𝑓(𝑥)

for any sufficiently well-behaved expectand 𝑓 . Unfortunately this sloppy notation is ubiquitous
and impossible to avoid in practice.
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Figure 8: As with any density function Lebesgue probability density functions are defined
only up to the null subsets of the reference measure; for the Lebesgue measure this
includes atomic subsets and their countable unions. All three of these Lebesgue
probability density functions are equivalent in the sense that they define exactly the
same expectation values for any expectand. One way to break this ambiguity is to
introduce an additional constraint; for example the left probability density function
is the only continuous probability density function.

One way to make this convention a bit more rigorous is to impose additional constraints on the
probability density functions when possible. For example if we can can restrict consideration
to continuous probability density functions then

∫
+∞

−∞
d𝑥 d𝜋

d𝜆(𝑥) 𝑓(𝑥) = ∫
+∞

−∞
d𝑥 d𝜌

d𝜆(𝑥) 𝑓(𝑥)

usually implies point-wise equality,

d𝜋
d𝜆(𝑥) = d𝜌

d𝜆(𝑥)

for all 𝑥 ∈ ℝ.

Regardless we have to be careful with unstated assumptions. Directly equating probability
density functions implies either that the equality holds only up to reference null subsets or
that we’re restricting consideration to certain structured probability density functions and not
just any valid probability density functions.

The safest approach is to never forget that, unlike regular functions, Lebesgue probability
density functions do not exist on their own. Rather Lebesgue probability density functions
always live under the shadow of integral signs. Anytime we see a bare probability density
function we should recognize the implied integral context.

4.3 Lebesgue Probability Density Functions As Visualizations

Lebesgue probability density functions quantify probability distributions by integration; for
example on a real line the area under the curve defined by a probability density function
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corresponds to interval probabilities. If we train ourselves to “integrate by eye”, qualitatively
mapping intervals to areas under a given curve, then we can extract a wealth of information
by visually examining a Lebesgue probability density function.

For example consider two intervals I1 and I2 of the same width but at different positions on
a real line. If d𝜋/d𝜆(𝑥) is larger for all points in I1 than it is for all points in I2 then the
probability allocated to the first interval will be larger than the probability allocated to the
second interval (Figure 9a)

𝜋(I1) > 𝜋(I2).
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Figure 9: Integrating a probability density function by eye is not always straightforward. In
particular bounds between probability densities do not always imply bounds between
interval probabilities. (a) Here largest probability density in the first interval, 𝑝1,
is smaller than the smallest probability density in the second interval, 𝑝2. Because
the two intervals are the same length the probability allocated to the second interval
must be larger than the probability allocated to the second interval. (b) In this
case we still have the largest probability density in the first interval smaller than
the smallest probability density in the second interval, 𝑝1 < 𝑝2. Because the two
intervals are not the same length, however, this does not imply that 𝜋(I1) < 𝜋(I2).
Indeed 𝜋(I1) is almost twice as large as 𝜋(I2)!

That said we have to take care when visually comparing intervals of different lengths. A
narrow interval can be allocated negligible probability even if the probability density function
is extremely large everywhere within it. Similarly intervals where the probability density
function is everywhere small can still be allocated appreciable probabilities if the interval is
large enough (Figure 9b).

With care these visual comparisons can convey a wealth of qualitative insights. For example
if a probability density function peaks at a single point then intervals containing the peak will
tend to be allocated larger probabilities than intervals that don’t contain the peak. In other
words the probability distribution implicitly defined by that probability density function will
concentrate in the neighborhood of that peak (Figure 10).
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Figure 10: The peaks of a Lebesgue probability density function qualify where the correspond-
ing probability density function concentrates. (a) The dark red probability density
function defines a probability distribution that concentrates at smaller values of 𝑥
than the probability distribution defined by the light red probability density func-
tion. (b) Similarly the two-dimensional probability density function on the left
defines a probability distribution over ℝ2 that concentrates at values where both
𝑥1 and 𝑥2 are small, while the one on the right defines a probability distribution
that concentrates at values where both 𝑥1 and 𝑥2 are large.

If a probability density function exhibits multiple peaks then the probability distribution will
concentrate locally in the neighborhood of each. Subsets falling into the gaps between these
local modes will be allocated much less probability.

The behavior of a probability density function around a peak qualifies how the implied proba-
bility distribution concentrates (Figure 11). For example if the probability density function is
wide then the concentration of probability will be weak and if the probability density function
is narrow then the concentration will be strong. The shape of the probability density func-
tion away from the peak qualifies the relative probability allocated to neighborhoods around
the peak compared to those away from it. Similarly is the probability density function is
asymmetric then the concentration will be skewed.

All of this said we have to be careful to not misinterpret the point-wise behavior of a Lebesgue
probability density function. For one point-wise behavior is formally ambiguous because
Radon-Nikodym derivatives are defined only up to null subsets. More importantly point-wise
evaluations of a probability density function don’t correspond to any well-defined expectation
values. Probability density functions exist to be integrated, and visualizations of probability
density functions are useful only when they qualitatively inform how certain integrals behave.

Finally the visualization of probability density functions is limited to only one and two-
dimensional real spaces. In higher dimensions we cannot plot how a Lebesgue probability
density function changes in every direction at the same time.

We can plot how a probability density function varies along one and two-dimensional cross
sections of the ambient space. For example when working on ℝ3 we can partically visualize a
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Figure 11: The decay of a probability density function around a peak determines how the
implied probability distribution concentrates. Here the dark red probability density
function decays symmetrically. In comparison the red probability density function
also decays symmetrically but the decay is more nuanced, falling off quickly at first
but then settling into a much slower decay as we move away from the peak. Finally
the light red probability denstiy function decays asymmetricaly, with the implied
probability distribution allocating more probability to larger values than smaller
values.
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probability density function
d𝜋
d𝜆3 (𝑥1, 𝑥2, 𝑥3)

by plotting the partial evaluations
d𝜋
d𝜆3 ( ̃𝑥1, 𝑥2, 𝑥3),
d𝜋
d𝜆3 (𝑥1, ̃𝑥2, 𝑥3),

and
d𝜋
d𝜆3 (𝑥1, 𝑥2, ̃𝑥3)

Properly interpreting these slices, however, can be tricky. In Chapter Eight we’ll learn how
to interpret these slices as conditional probability density functions.

A more effective approach in practice is to not try to visualize an entire probability density
function at once but rather investigate its behavior when projected to lower-dimensional sum-
maries spaces. We’ll learn how to construct these projections in the next chapter.

4.4 Lebesgue Probability Densities As Limiting Interval Probabilities

Lebesgue probability density functions can be integrated to compute the probability allocated
to intervals. We can also use certain limiting interval probabilities to compute Lebesgue
probability densities.

To set up this latter construction let’s consider a real line 𝑋 = ℝ and the interval

I = (𝑥1, 𝑥1 + 𝐿]

of length 𝐿 > 0. We can then decompose this initial interval into 𝑁 disjoint subintervals

I𝑛 = (𝑥1 + 𝑛 𝜖, 𝑥1 + (𝑛 + 1) 𝜖],

each of length
𝜖 = 𝐿

𝑁 .

By countable additivity the probability that a probability distribution 𝜋 allocates to the inter-
val I is the same as the sum of the probabilities allocated to each subinterval I𝑛,

𝜋( (𝑥1, 𝑥1 + 𝐿] ) =
𝑁

∑
𝑛=0

𝜋( (𝑥1 + 𝑛 𝜖, 𝑥1 + (𝑛 + 1) 𝜖] ).

Multiplying and dividing by the subinterval length 𝜖 this becomes

𝜋( (𝑥1, 𝑥1 + 𝐿] ) =
𝑁

∑
𝑛=0

𝜖 ⋅ 𝜋( (𝑥1 + 𝑛 𝜖, 𝑥1 + (𝑛 + 1) 𝜖] )
𝜖 .
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This, however, is exactly the setup for a Riemann integral. As the number of subintervals
increases, 𝑁 → ∞, and the length of each subinterval decreases, 𝜖 → 0, the left hand side will
remain the same but the sum on the right hand side will converge to a Riemann integral,

𝜋( (𝑥1, 𝑥1 + 𝐿] ) = lim
𝑁→∞

𝑁
∑
𝑛=0

𝜋 ((𝑥1 + 𝑛 𝐿
𝑁 , 𝑥1 + (𝑛 + 1) 𝐿

𝑁 ])

= ∫
𝑥1+𝐿

𝑥1

d𝑥 𝑝(𝑥),

with the integrand
𝑝(𝑥) = lim

𝜖→0
𝜋( (𝑥, 𝑥 + 𝜖] )

𝜖 .

At the same time we can also use a probability density function between 𝜋 and the Lebesgue
measure 𝜆 to compute the same interval probability,

𝜋( (𝑥1, 𝑥1 + 𝐿] ) = ∫
𝑥1+𝐿

𝑥1

d𝑥 d𝜋
d𝜆(𝑥).

Comparing these two results we can identify the Riemann integrand with the Lebesgue prob-
ability density function,

d𝜋
d𝜆(𝑥) 𝜆= lim

𝜖→0
𝜋( (𝑥, 𝑥 + 𝜖] )

𝜖 .

Note that this result relies on the choice of metric. The convergence of a scaled interval
probability to a probability density function depends on the metric we use to define interval
lengths. Different metrics will result in different limiting values, consistent with the fact that
different metrics define different Lebesgue measures and hence different Lebesgue probability
density functions.

This result helps to explain why we have to take care with interpreting probability densi-
ties. Lebesgue probability densities don’t correspond to interval probabilities but rather how
quickly interval probabilities change as we scan across the ambient real line; they encode dif-
ferential information about probability allocations. Equivalently probability density functions
are endowed with units of probability over length, not units of probability.

One practical corollary of this relationship is that we can use properly scaled interval proba-
bilities to approximate probability density functions. For small but finite 𝜖 the quantity

𝜋( (𝑥, 𝑥 + 𝜖] )
𝜖

approximates the Lebesgue probability density

d𝜋
d𝜆(𝑥).
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Consequently a histogram where the bin heights are scaled by the inverse bin widths,

𝜋( (𝑥𝑖, 𝑥𝑖+1] )
𝑥𝑖+1 − 𝑥𝑖

,

approximately visualizes a probability density function. As the bins become narrower and nar-
rower the scaled histogram becomes a more and more accurate representation of the Lebesgue
probability density function (Figure 12).

dπ
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π(bi)

l(bi) dπ
dλ (x)
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l(bi) dπ
dλ (x)

x

π(bi)
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Figure 12: When we scale the bin probabilities 𝜋(b𝑖) = 𝜋( (𝑥𝑖, 𝑥𝑖+1] ) by the bin widths 𝑙(b𝑖) =
𝑥𝑖+1 − 𝑥𝑖 a histogram approximately visualizes a probability density function. As
the bin widths are decreased the approximation improves.

This approximate visualization is particularly useful when we can compute interval probabil-
ities but we can’t evaluate the Lebesgue probability density function. As we’ll discover in
the next chapter this exact circumstance often arises when we try to project a probability
distribution from a higher-dimensional space to a lower-dimensional space.

4.5 The Normal Family of Probability Density Functions

The most convenient Lebesgue probability density functions are those that facilitate analytic
Riemann integration as much as possible. The two-parameter normal family of Lebesgue
probability density functions

normal(𝑥; 𝜇, 𝜎) = 1√
2 𝜋𝜎 exp (−1

2 (𝑥 − 𝜇
𝜎 )

2
) ,

where 𝜇 ∈ ℝ and 𝜎 ∈ ℝ+, is particularly convenient.

The two parameters 𝜇 and 𝜎 directly determine the basic shape of each normal probability
density function (Figure 13). A normal probability density function peaks at 𝜇, which is
referred to generally as a location parameter. The second parameter 𝜎 determines how
quickly the probability density function decays as we move away from the peak; the smaller 𝜎
is the narrower the density function will be. It is known as a scale parameter.

Each normal(𝑥; 𝜇, 𝜎) is referred to as a normal probability density function, or just nor-
mal density function for short. We might be tempted to refer to the probability distribution
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Figure 13: Every normal probability density function peaks at the location parameter 𝜇, with
the scale parameter 𝜎 controlling how quickly it decays as we move away from the
peak. The implied probability distributions allocate most of their probability, over
99%, to the interval (𝜇 − 3 𝜎, 𝜇 + 3 𝜎).

defined by a normal density function as a normal distribution, but this association is well-
defined only once we fix a real line and hence a particular Lebesgue measure. Because the
same normal density function will define different probability distributions on different real
lines I try to avoid terms like “normal distribution”.

The conventions I’ve used here are common, but no means standard. For example in some fields
this family is described as “Gaussian” in honor of Carl Friedrich Gauss who first introduced
it. Moreover there are multiple, equivalent ways to parameterize the family including

normal(𝑥; 𝜇, 𝑣) = 1√
2 𝜋 𝑣 exp (− 1

2 𝑣 (𝑥 − 𝜇)2) ,

normal(𝑥; 𝜇, 𝜏) = √ 𝜏
2 𝜋 exp (−𝜏

2 (𝑥 − 𝜇)2) ,

and even
normal(𝑥; 𝜂1, 𝜂2) = √−𝜂2

𝜋 exp (𝜂1 𝑥 + 𝜂2 𝑥2 + 𝜂2
1

4 𝜂2
2

) .

Each of these parameterizations can be convenient in certain circumstances, but the initial
parameterization defined above tends to the most useful for practical applications

The integrals

∫
+∞

−∞
d𝑥 normal(𝑥; 𝜇, 𝜎) 𝑓(𝑥)
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that define expectation values are particularly nice, at least as far as integrals go. That isn’t
to say that the integrals are easy to evaluate but rather that they many of them actually
admit closed-form solutions, which is pretty miraculous when it comes to integrals. For those
twisted individuals who fancy a good integral calculation, myself included, I’ve included those
calculations in the Appendix. Everyone else can take these results at face value.

For example we can verify that each probability density function in the normal family is
properly normalized with the integral

normal(ℝ; 𝜇, 𝜎) = ∫
+∞

−∞
d𝑥 normal(𝑥; 𝜇, 𝜎)

= ∫
+∞

−∞
d𝑥 1√

2 𝜋𝜎 exp (−1
2 (𝑥 − 𝜇

𝜎 )
2
)

= 1.

Similarly we can compute the mean of the probability distribution implied by each normal
density function,

𝕄(𝜇, 𝜎) = 𝔼normal[𝜄; 𝜇, 𝜎]

= ∫
+∞

−∞
d𝑥 normal(𝑥; 𝜇, 𝜎) 𝑥

= ∫
+∞

−∞
d𝑥 1√

2 𝜋𝜎 exp (−1
2 (𝑥 − 𝜇

𝜎 )
2
) 𝑥

= 𝜇.

The parameter 𝜇 determines not just the peak of each normal probability density function but
also the mean of each corresponding probability distribution. Because of this 𝜇 is sometimes
referred to as a mean parameter.

With even more mathematical elbow grease we can show that the variance is given by

𝕍(𝜇, 𝜎) = 𝔼normal[(𝜄 − 𝕄(𝜇, 𝜎))2; 𝜇, 𝜎]
= 𝔼normal[(𝜄 − 𝜇)2; 𝜇, 𝜎]

= ∫
+∞

−∞
d𝑥 normal(𝑥; 𝜇, 𝜎) (𝑥 − 𝜇)2

= ∫
+∞

−∞
d𝑥 1√

2 𝜋𝜎 exp (−1
2 (𝑥 − 𝜇

𝜎 )
2
) (𝑥 − 𝜇)2

= 𝜎2.

As we increase 𝜎 the normal probability density functions widen and the variance of the implied
probability distributions increases.
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Normal probability density functions can also be used to evaluate the cumulative distribution
function corresponding to the implicitly-defined probability distributions,

Πnormal(𝑥; 𝜇, 𝜎) = normal( (−∞, 𝑥]; 𝜇, 𝜎 )
= 𝔼normal[𝐼(−∞,𝑥]; 𝜇, 𝜎]

= ∫
+∞

−∞
d𝑥′ normal(𝑥′; 𝜇, 𝜎) 𝐼(−∞,𝑥](𝑥′)

= ∫
𝑥

−∞
d𝑥′ normal(𝑥′; 𝜇, 𝜎)

= 1
2 + 1

2 erf (𝑥 − 𝜇√
2 𝜎

) ,

where
erf(𝑥) 2√𝜋 ∫

𝑥

0
d𝑡 exp (−𝑡2)

is known as the error function.

Conveniently the error function, if not the normal cumulative distribution functions them-
selves, are available in most programming languages. This allows us directly compute interval
probabilities by subtracting cumulative probabilities (Figure 14),

normal( (𝑥1, 𝑥2] ; 𝜇, 𝜎) = 1
2 (erf (𝑥2 − 𝜇√

2 𝜎
) − erf (𝑥1 − 𝜇√

2 𝜎
)) .

x1 x2

π(x)

x

π( (x1, x2] ) =
∫ x2

x1
dxnormal(x;µ, σ)

x1 x2

Πnormal(x1)

Πnormal(x2)

Π
n
o
rm

a
l(
x

)

x

π( (x1, x2] ) = Πnormal(x2) − Πnormal(x1)

Figure 14: The normal cumulative distribution functions Πnormal(𝑥; 𝜇, 𝜎) provide another way
to compute interval probabilities. In addition to integrating under the curve de-
fined by a normal probability density function we can also subtract the cumulative
probabilities at the interval boundaries.
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5 Other Useful Probability Density Functions

Most of applications of probability theory that we will tackle in this book will use probability
distributions that are absolutely continuous with respect to a counting measure or a Lebesgue
measure and implemented with appropriate probability density functions. There are a few
exceptions, however, that we will occasionally need to accommodate.

5.1 Singular Probability Density Functions

On any measurable space where the atomic subsets are measurable we can always define a
singular probability distribution 𝛿𝑥′ that concentrates all probability on a single point 𝑥′ ∈
𝑋,

𝛿𝑥(x) = { 1, 𝑥′ ∈ x
0, 𝑥′ ∉ x .

More generally because only a single point contributes we can define expectation values by the
point-wise evaluation of the expectand,

𝔼𝛿𝑥
[𝑓] = 𝑓(𝑥′).

These probability distributions are known as Dirac distributions.

Because 𝛿𝑥′({𝑥′}) = 1 the atomic subset {𝑥′} is not a null subset with respect to 𝛿𝑥′ . Conse-
quently Dirac distributions are not absolutely continuous with respect to any reference measure
that allocates vanishing probability to the atomic subsets. In particular singular probability
distributions on real lines are not absolutely continuous with respect to the Lebesgue measure,
and we cannot represent them with ordinary functions!

For example if a probability density function existed then we should be able to engineer a
function 𝛿(𝑥 − 𝑥′) such that

𝑓(𝑥′) = 𝔼𝛿𝑥′ [𝑓] = 𝕀𝜆[𝛿(⋅ − 𝑥′) ⋅ 𝑓] = ∫
∞

−∞
d𝑥 𝛿(𝑥 − 𝑥′) 𝑓(𝑥)

for any expectand 𝑓 ∶ ℝ → ℝ. How could we achieve this behavior?

Well if the hypothetical density function 𝛿(𝑥 − 𝑥′) concentrated around 𝑥′ then the integrals
would also concentrate around 𝑓(𝑥′). For example integrals of normal probability density
functions centered at 𝑥′ approximate the desired behavior better and better as the scale
becomes smaller and smaller (Figure 15).

In the limit 𝜎 → 0 the normal probability density functions reduce to an infinitely high spike
at the mean,

lim
𝜎→0

1√
2 𝜋𝜎 exp (−1

2 (𝑥′ − 𝑥
𝜎 )

2
) = { ∞, 𝑥′ = 𝑥

0, 𝑥′ ≠ 𝑥 .
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Figure 15: As they become narrower and narrower normal probability density functions start
to behave like a hypothetical singular density function. (a) In the limit 𝜎 → 0 the
normal probability density functions centered at 𝜇 = 𝑥′ converge to an infinitely
narrow spike at 𝑥′. (b) At the same the expectation values of all expectands 𝑓
coverge to the point evaluations 𝑓(𝑥′).

Perhaps we can we define 𝛿(𝑥 − 𝑥′) by this spike?

Unfortunately this intuition doesn’t quite work out. Remember that probability density func-
tions can be modified at a null subset of input points without affecting their integrals. Because
{𝑥′} is a Lebesgue null subset this implies that our infinite spike should be equivalent to a
function 𝑧 that returns zero for all inputs,

𝕀𝜆[𝛿(⋅ − 𝑥′) ⋅ 𝑓] = 𝕀𝜆[𝑧 ⋅ 𝑓] = 𝕀𝜆[𝑧].

Unfortunately this results in an ill-defined integral,

𝕀𝜆[𝑧] = ∫
+∞

−∞
d𝑥 0 = 0 ⋅ ∞.

that contradicts the desired behavior

𝕀𝜆[𝛿(⋅ − 𝑥′) ⋅ 𝑓] = 𝑓(𝑥′).

We cannot define a function that can scale a Lebesgue measure into a singular Dirac distribution.
Of course this is what the failure of absolutely continuity was trying to tell us in the first
place!

Because the expectation values are trivial to compute, working with a singular probability
distribution directly is straightforward. The lack of a well-defined singular density function,
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however, can be awkward when we’re exclusively using probability density functions to specify
every other probability distribution of interest.

One way to get around this issue is to just define an object 𝛿 called the Dirac delta function
that satisfies

𝑓(0) = ∫
∞

−∞
d𝑥 𝛿(𝑥) 𝑓(𝑥)

for all functions 𝑓 ∶ ℝ → ℝ. Frustratingly contrary to the name, 𝛿 is not a function but
rather what mathematicians call a generalized function. Fortunately these technicalities
don’t matter so long as we only ever use the formal integral definition in calculations.

For example consider an application where we want to inflate the probability allocated to
the atomic subset {𝑥′} from 0 to 0 < 𝛾 ≤ 1, breaking absolute continuity with respect to
the Lebesgue measure in the process. We can achieve this with a mixture probability
distribution that combines a Dirac distribution 𝛿𝑥′ with the initial probability distribution
𝜋 that is absolutely continuous with respect to the Lebesgue measure,

𝜌 = 𝛾 𝛿𝑥′ + (1 − 𝛾) 𝜋.
This mixture distribution defines the subset allocations

𝜌(x) = 𝛾 𝛿𝑥′(x) + (1 − 𝛾) 𝜋(x)

= { 𝛾 + (1 − 𝛾) 𝜋(x), 𝑥′ ∈ x
(1 − 𝛾) 𝜋(x), 𝑥′ ∉ x

and the expectation values

𝔼𝜌[𝑓] = 𝛾 𝔼𝛿𝑥′ [𝑓] + (1 − 𝛾) 𝔼𝜋[𝑓]
= 𝛾 𝑓(𝑥′) + (1 − 𝛾) 𝔼𝜋[𝑓].

Using the Dirac delta function we can heuristicaly represent this mixture distribution as
d𝜌
d𝜆(𝑥) = 𝛾 𝛿(𝑥 − 𝑥′) + (1 − 𝛾) d𝜋

d𝜆(𝑥)

where all expectation values are calculated as

𝔼𝜌[𝑓] = ∫
∞

−∞
d𝑥 d𝜌

d𝜆(𝑥) 𝑓(𝑥)

= ∫
∞

−∞
d𝑥 (𝛾 𝛿(𝑥 − 𝑥′) + (1 − 𝛾) d𝜋

d𝜆(𝑥)(𝑥)) 𝑓(𝑥)

= 𝛾 ∫
∞

−∞
d𝑥 𝛿(𝑥 − 𝑥′) 𝑓(𝑥) + (1 − 𝛾) ∫

∞

−∞
d𝑥 d𝜋

d𝜆(𝑥) 𝑓(𝑥)

= 𝛾 𝑓(𝑥′) + (1 − 𝛾) ∫
∞

−∞
d𝑥 d𝜋

d𝜆(𝑥) 𝑓(𝑥)

= 𝛾 𝑓(𝑥′) + (1 − 𝛾) 𝔼𝜋[𝑓].
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If we restrict consideration to continuous probability density functions then we can visualize
this mixture density function d𝜌/d𝜆 as a continuous base density function d𝜋/d𝜆 with a single
discontinuity at 𝑥′ (Figure 16). Without this restriction, however, visualizations like this are
ambiguous because d𝜋/d𝜆 is defined only up to subsets of null Lebsegue measure.

p(x)

δ(x− x′)

x′

dρ
dλ (x)

x

Figure 16: One way to visually represent the mixture of a base probability distribution with a
singular probability distribution is to inflate the base probability density function
with an infinite spike. This visualization is well-defined, however, only if we assume
a continuous probability density function for the base probability distribution.

Because of all of this delicate mathematical baggage the Dirac delta “function” requires care
when using in practice. That said the compact, dare I say elegant, probability density function
descriptions it enables is often worth the added subtlety.

5.2 Geometric Probability Density Functions

Real spaces adequately model many phenomena that arise in practical applications, but by no
means all of them. In some cases we will need to consider continuous spaces that look like a
real spaces locally but exhibit different shapes globally (Figure 18). These include for example
spheres, torii, and even more foreign spaces. Mathematically these spaces, along with real
spaces, are collectively known as manifolds.

One nice feature of manifolds is that we can always equip them with consistent metric struc-
tures. A chosen metric then allows us to define a compatible uniform measure that emulates
many of the features of the Lebesgue measure on real spaces. In particular these uniform
measures serve as natural reference measures on which we can build many useful probability
distributions.
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Figure 17: A circle 𝕊1 is an example of a manifold. (a) Globally the space defined by a circle
is distinct from the space defined by a real line. (b) If we zoom in, however, the
local behavior of the circle is equivalent to the local behavior of a real line.

For example we can equip a circle 𝑆1 with a metric that endows angular intervals with a notion
of length (Figure 18a). We can then define a uniform measure that allocates the same measure
to every angular interval of the same length (Figure 18b).

Another important consequence of this construction is that, similar to the Lebesgue measure,
these uniform measures allocate zero measure to every atomic subset. Consequently any prob-
ability distribution over 𝑆1 that also allocates vanishing probability to the atomic subsets
will be absolutely continuous to these uniform measures. This allows us to define circular
probability density functions

𝑝 ∶ 𝕊1 → ℝ+

to represent each of these absolutely continuous probability distributions (Figure 19).

We have to take care, however, not to confuse these circular probability density functions with
Lebesgue probability density functions. In particular expectation values

𝔼𝜋[𝑓] = 𝕀𝜈[𝑝 ⋅ 𝑓]

are not implemented with classic Riemann integration but rather a more general manifold
integration that is not implemented in the same way.

That said sometimes there are work arounds. For example removing a point 𝑥′ ∈ 𝕊1 from
the circle defines a new space 𝕊1 𝑥′. Circular probability distributions, circular probability
density functions, and circular expectands 𝑓 ∶ 𝕊 → ℝ on the circle all define corresponding
objects on this excised space. Once we’ve removed the point we can then unroll and stretch
out 𝕊1 𝑥′ into a real line ℝ, taking all of the probabilistic objects along with us (Figure 20).
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Figure 18: Manifolds like the circle can be equipped with metrics, and uniform measures com-
patible with that metric structure. (a) A metric endows each angular interval with
a length. (b) We can then define a uniform measure that allocates to each angular
interval a measure equal to its length.

S1 S1 S1

Figure 19: Sufficiently nice probability distributions on a circle 𝕊1 can be represented by cir-
cular probability density functions 𝑝 ∶ 𝕊1 → ℝ+. Similar to Lebesgue probability
density functions these circular probability density functions visualize a host of
qualitative behaviors, such as where and how the implied probability distributions
concentrate.
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In general expectation values on the initial circular probability space will be different from the
expectation values on the excised probability space. If {𝑥′} is a null subset, however, then
they will be the same,

𝔼𝜋[𝑓] = 𝕀𝜈[𝑝 ⋅ 𝑓] = 𝕀𝜈′ [𝑝′ ⋅ 𝑓 ′] = 𝕀𝜈″ [𝑝″ ⋅ 𝑓″],

where no ticks denotes objects on 𝕊1, one tick denotes objects on 𝕊1 ℝ, and two ticks denotes
objects on ℝ.

To summarize, by removing a point from the circle we can implement circular expectation
values with classic Riemann integrals. Not every cut point, however, will be as convenient as
others. Cutting the circle away from where the initial probability density function concentrates
results in a well-behaved, unimodal Lebesgue probability density function (Figure 20a). On
the other hand cutting near the centrality of the probability density function results in a
Lebesgue probability density function with two peaks at relatively extreme values, which can
easily frustrate integral calculations (Figure 20b).

If we don’t know where the initial circular probability density function concentrates then we
won’t know where to make a good cut, and we can end up with a difficult Lebesgue probability
density function that doesn’t actually get us any closer to a completed calculation. The subtle
relationship between circular probability density functions, let alone other, more complicated
manifold probability density functions, and Lebesgue probability density functions is dark and
full of terrors. To avoid computational problems, or worse corrupting the target expectation
values, we need to be very careful when working on these more sophisticated spaces.

6 Conclusion

Because they provide a straightforward way to implement probability distributions in practice,
probability density functions are absolutely critical in transitioning probability theory from
abstract mathematics to a viable tool for applied practice. That said because they define
probability distributions only in the context of integrals informed by a given reference measure
they are not without their subtleties. When we ignore this context we become prone to
incorrect interpretations and implementations which then results in inconsistent applications
of the underlying probability theory.
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Figure 20: Probabilistic computations on a circle can be transformed into integrals on a real
line with a little bit of surgery. Removing a point 𝑥′ from a circle 𝕊1 gives the space
𝕊1 𝑥′ which can be unrolled and stretched out into a real line ℝ. Because its removes
only a null subset this surgery doesn’t affect integrals, allowing us to compute
circular expectation values with Riemann integrals on ℝ. Which point we remove,
however, can have a strong influence no how difficult those Riemann integrals are.
(a) Cutting the circle at a point around which little probability is allocated results
in a well-behaved Lebesgue probability density function that facilitates integration.
(b) On the other hand cutting at a point around which a substantial amount of
probability is allocated results in a more pathological Lebesgue probability density
function that frustrates integration.
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Appendix: Sums and Integrals

Probability density functions allow us to compute expectation values using explicit mathemat-
ical operations, in particular summation when working with a counting reference measure and
Riemann integration when working with a Lebesgue reference measure. Just because these
operations are explicit, however, doesn’t mean that they’re straightforward.

Deriving analytic results for even the most convenient summations and integrals can require a
substantial amount of experience with mathematical techniques, and in many cases tricks that

42



seem to come out of nowhere. For those who are curious about these techniques this appendix
gathers full calculations for the Poisson and normal results that we used in this chapter.

Note that these calculations will absolutely not be necessary for keeping up with future chap-
ters. Indeed in most applications we will take advantage of other computational tools that
don’t require these kinds of onerous calculations at all.

6.1 Poisson Summations

Let’s warm up with some summations.

The normalization of each Poisson probability mass function is given by

Poisson(𝑋; 𝜆) = 𝔼Poisson[𝐼𝑋; 𝜆]
= 𝕀𝜒[Poisson(; 𝜆) ⋅ 𝐼𝑋]

=
∞

∑
𝑛=0

Poisson(𝑛; 𝜆) ⋅ 1

=
∞

∑
𝑛=0

𝜆𝑛𝑒−𝜆

𝑛!

= 𝑒−𝜆
∞

∑
𝑛=0

𝜆𝑛

𝑛! .

This summation, however, is just the power series definition for the exponential function,

𝑒𝑥 =
∞

∑
𝑛=0

𝑥𝑛

𝑛! .

Consequently

Poisson(𝑋; 𝜆) = 𝑒−𝜆
∞

∑
𝑛=0

𝜆𝑛

𝑛!
= 𝑒−𝜆𝑒𝜆

= 1,

as required.
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Similarly the mean for each Poisson probability distribution is given by

𝕄(𝜆) = 𝔼Poisson[𝜄; 𝜆]
= 𝕀𝜒[Poisson(; 𝜆) ⋅ 𝜄]

=
∞

∑
𝑛=0

Poisson(𝑛; 𝜆) ⋅ 𝜄(𝑛)

=
∞

∑
𝑛=0

𝜆𝑛𝑒−𝜆

𝑛! ⋅ 𝑛

=
∞

∑
𝑛=1

𝜆𝑛𝑒−𝜆

(𝑛 − 1)! .

To evaluate this sum we need to shift the summation index from 𝑛 to 𝑚 = 𝑛−1 which gives

𝕄(𝜆) =
∞

∑
𝑛=1

𝜆𝑛𝑒−𝜆

(𝑛 − 1)!

=
∞

∑
𝑚=1

𝜆𝑚+1𝑒−𝜆

𝑚!

= 𝜆
∞

∑
𝑚=1

𝜆𝑚𝑒−𝜆

𝑚! .

Conveniently the remaining sum is exactly the normalization that we showed above is equal
to one. Substituting this gives

𝕄(𝜆) = 𝜆
∞

∑
𝑚=1

𝜆𝑚𝑒−𝜆

𝑚!
= 𝜆.

To compute the variances we’ll first need the second-order moment,

𝕄2(𝜆) = 𝔼Poisson[𝜄2; 𝜆]
= 𝕀𝜒[Poisson(; 𝜆) ⋅ 𝜄2]

=
∞

∑
𝑛=0

Poisson(𝑛; 𝜆) ⋅ 𝑖𝑜𝑡𝑎(𝑛)2

=
∞

∑
𝑛=0

𝜆𝑛𝑒−𝜆

𝑛! ⋅ 𝑛2

=
∞

∑
𝑛=1

𝜆𝑛𝑒−𝜆

(𝑛 − 1)! 𝑛
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Shift the summation index from 𝑛 to 𝑚 = 𝑛 − 1 as we did above gives

𝕄2(𝜆) =
∞

∑
𝑛=1

𝜆𝑛𝑒−𝜆

(𝑛 − 1)! 𝑛

=
∞

∑
𝑚=1

𝜆𝑚+1𝑒−𝜆

𝑚! (𝑚 + 1)

= 𝜆
∞

∑
𝑚=1

𝜆𝑚𝑒−𝜆

𝑚! 𝑚 + 𝜆
∞

∑
𝑚=1

𝜆𝑚𝑒−𝜆

𝑚! .

Now the first summation is the Poisson mean while second summation is the normalization,
both of which we’ve already computed. Substituting gives

𝕄2(𝜆) = 𝜆
∞

∑
𝑚=1

𝜆𝑚𝑒−𝜆

𝑚! 𝑚 + 𝜆
∞

∑
𝑚=1

𝜆𝑚𝑒−𝜆

𝑚!
= 𝜆 𝕄(𝜆) + 𝜆 Poisson(𝑋; 𝜆)
= 𝜆 𝜆 + 𝜆 1
= 𝜆2 + 𝜆.

We can now construct the Poisson variances by

ℂ2 = 𝔼Poisson[(𝜄 − 𝕄(𝜆))2; 𝜆]
= 𝔼Poisson[𝜄2 − 2 𝕄(𝜆) 𝜄 + 𝕄(𝜆)2; 𝜆]
= 𝔼Poisson[𝜄2; 𝜆] − 2 𝕄(𝜆) 𝔼Poisson[𝜄; 𝜆] + 𝕄(𝜆)
= (𝜆2 + 𝜆) − 2 𝜆 𝜆 + 𝜆2

= (2𝜆2 − 2𝜆2) + 𝜆
= 𝜆.

6.2 Normal Integrals

Working with normal expectation values is substantially easier once we’ve established a few
foundational results.

6.2.1 The Basic Normal Integral

First let’s compute the so-called “normal integral”

𝐻 = ∫
∞

−∞
d𝑥 exp (−𝑎 𝑥2) .
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The trick to computing this integral is to work not with a single copy of this integral but rather
two copies of this integral,

𝐻2 = 𝐻 ⋅ 𝐻

= ∫
∞

−∞
d𝑥1 exp (−𝑎 𝑥2

1) ∫
∞

−∞
d𝑥2 exp (−𝑎 𝑥2

2)

= ∫
∞

−∞
d𝑥1 ∫

∞

−∞
d𝑥2 exp (−𝑎 𝑥2

1) exp (−𝑎 𝑥2
2)

= ∫
∞

−∞
d𝑥1 ∫

∞

−∞
d𝑥2 exp (−𝑎 (𝑥2

1 + 𝑥2
2)) .

Using two copies of the integral remarkable results in a two-dimensional integral that is ripe
for polar coordinates. Making the transformation

𝑟 = 𝑥2
1 + 𝑥2

2

𝜃 = arctan 𝑥2
𝑥1

with
d𝑥1 d𝑥2 = d𝜃 d𝑟 𝑟

gives

𝐻2 = ∫
∞

−∞
d𝑥1 ∫

∞

−∞
d𝑥2 exp (−𝑎 (𝑥2

1 + 𝑥2
2))

= ∫
2 𝜋

0
d𝜃 ∫

∞

0
d𝑟 𝑟 exp (−𝑎 𝑟2)

= ∫
∞

0
d𝑟 𝑟 exp (−𝑎 𝑟2) ∫

2 𝜋

0
d𝜃

= ∫
∞

0
d𝑟 𝑟 exp (−𝑎 𝑟2) 2 𝜋

= 2 𝜋 ∫
∞

0
d𝑟 𝑟 exp (−𝑎 𝑟2) .

At this point we make the substitution

𝑢 = −𝑎 𝑟2

with
d𝑢 = d𝑟 (−2 𝑎 𝑟)
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which gives

𝐻2 = 2 𝜋 ∫
∞

0
d𝑟 𝑟 exp (−𝑎 𝑟2)

= 2 𝜋 ∫
−∞

0
d𝑢 −1

2 𝑎 exp (𝑢)

= −𝜋
𝑎 ∫

−∞

0
d𝑢 exp (𝑢)

= −𝜋
𝑎 [exp (𝑢)]−∞

0

= −𝜋
𝑎 [exp (−∞) − exp (0)]

= −𝜋
𝑎 [0 − 1]

= 𝜋
𝑎 .

Consequently

∫
∞

−∞
d𝑥 exp (−𝑎 𝑥2) =

√
𝐻2 = √𝜋

𝑎 .

6.2.2 Higher-Order Normal Integrals

We can now use this basic normal integral to compute the slightly more sophisticated integral

∫
∞

−∞
d𝑥 𝑥𝑘 exp (−𝑎 𝑥2) .

One thing that we can note immediately is that when 𝑘 is an odd integer the integrand will be
an odd function, and the integral will vanish by symmetry. Consequently we really only need
to compute the integrals

∫
∞

−∞
d𝑥 𝑥2𝑘 exp (−𝑎 𝑥2)

for 𝑘 ∈ ℕ.

We could hack away at this integral by integrating the basic normal integral by parts. For
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example

√𝜋
𝑎 = ∫

∞

−∞
d𝑥 (1) ( exp (−𝑎 𝑥2) )

= [𝑥 exp (−𝑎 𝑥2)]∞
−∞ − ∫

∞

−∞
d𝑥 (𝑥) ((−2 𝑎 𝑥) exp (−𝑎 𝑥2) )

= [0 − 0] + 2 𝑎 ∫
∞

−∞
d𝑥 𝑥2 exp (−𝑎 𝑥2)

= 2 𝑎 ∫
∞

−∞
d𝑥 𝑥2 exp (−𝑎 𝑥2)

or
∫

∞

−∞
d𝑥 𝑥2 exp (−𝑎 𝑥2) = 1

2 𝑎 √𝜋
𝑎 = √𝜋 1

2 𝑎−3/2.

Higher-order integrals can then be derived by repeating this process over and over again.

That said we can also compute these integrals more efficiently with the help of a devious trick
of mathematics. The idea is to start with our initial integral

∫
∞

−∞
d𝑥 exp (−𝑎 𝑥2) = √𝜋

𝑎

and differentiate both sides with respect to the parameter 𝑎,

d
d𝑎 ∫

∞

−∞
d𝑥 exp (−𝑎 𝑥2) = d

d𝑎√𝜋
𝑎

= √𝜋 (−1
2) 𝑎−3/2.

Because the integrand is sufficiently nice the derivative and integral operations here commute,
allowing us to pull the derivative inside of the integral,

d
d𝑎 ∫

∞

−∞
d𝑥 exp (−𝑎 𝑥2) = √𝜋 (−1

2) 𝑎−3/2

∫
∞

−∞
d𝑥 d

d𝑎 exp (−𝑎 𝑥2) = √𝜋 (−1
2) 𝑎−3/2

∫
∞

−∞
d𝑥 (−𝑥2) exp (−𝑎 𝑥2) = √𝜋 (−1

2) 𝑎−3/2

∫
∞

−∞
d𝑥 𝑥2 exp (−𝑎 𝑥2) = √𝜋 1

2 𝑎−3/2,

consistent with our earlier integration by parts calculation.
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The beauty of this latter approach, however, is that it generalizes to larger 𝑘 immediately with
repeated differentiation,

d𝑘

d𝑎𝑘 ∫
∞

−∞
d𝑥 exp (−𝑎 𝑥2) = d𝑘

d𝑎𝑘 √𝜋
𝑎

∫
∞

−∞
d𝑥 d𝑘

d𝑎𝑘 exp (−𝑎 𝑥2) = d𝑘

d𝑎𝑘 √𝜋
𝑎

∫
∞

−∞
d𝑥 (−1)𝑘𝑥2𝑘 exp (−𝑎 𝑥2) = √𝜋

𝑘
∏
𝑘′=1

(−1
2 − (𝑘′ − 1)) 𝑎−(1/2+𝑘)

∫
∞

−∞
d𝑥 (−1)𝑘𝑥2𝑘 exp (−𝑎 𝑥2) = √𝜋 (−1)𝑘

𝑘
∏
𝑘′=1

2 𝑘′ − 1
2 𝑎−(1/2+𝑘)

∫
∞

−∞
d𝑥 𝑥2𝑘 exp (−𝑎 𝑥2) = √𝜋 (2 𝑘 − 1)!!

2𝑘 𝑎−(1/2+𝑘),

where

𝑛!! =
𝑛+1

2

∏
𝑘′=1

(2 𝑘′ − 1)

is the double factorial.

6.2.3 Normal Expectation Values

With the general result

∫
∞

−∞
d𝑥 𝑥2𝑘 exp (−𝑎 𝑥2) = √𝜋𝑘!!

2𝑘 𝑎−(𝑘+1/2)

we can now go to town on the standard normal expectation values.

For example the normalization of each normal density function is given by

normal(ℝ; 𝜇, 𝜎) = 𝔼normal[𝐼ℝ; 𝜇, 𝜎]
= 𝕀𝜆[normal(⋅; 𝜇, 𝜎) ⋅ 𝐼ℝ]

= ∫
∞

−∞
d𝑥 1√

2 𝜋 𝜎normal(𝑥; 𝜇, 𝜎)

= ∫
∞

−∞
d𝑥 1√

2 𝜋 𝜎 exp (−1
2 (𝑥 − 𝜇

𝜎 )
2
)

= 1√
2 𝜋 𝜎 ∫

∞

−∞
d𝑥 exp (−1

2 (𝑥 − 𝜇
𝜎 )

2
) .
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To proceed further we have to change variables to

𝑢 = 𝑥 − 𝜇
𝜎

with
d𝑢 = d𝑥 1

𝜎
to give

normal(ℝ; 𝜇, 𝜎) = 1√
2 𝜋 𝜎 ∫

∞

−∞
d𝑥 exp (−1

2 (𝑥 − 𝜇
𝜎 )

2
)

= 1√
2 𝜋 𝜎 ∫

∞

−∞
d𝑢 𝜎 exp (−1

2𝑢2)

= 1√
2 𝜋 ∫

∞

−∞
d𝑢 exp (−1

2𝑢2) .

For 𝑎 = 1/2 and 𝑘 = 0 our general normal integral gives

normal(ℝ; 𝜇, 𝜎) = 1√
2 𝜋 ∫

∞

−∞
d𝑢 exp (−1

2𝑢2)

= 1√
2 𝜋

√
2 𝜋

= 1,
as required.

Similarly the mean is given by

𝕄(𝜇, 𝜎) = 𝔼normal[𝜄; 𝜇, 𝜎]
= 𝕀𝜆[normal(⋅; 𝜇, 𝜎) ⋅ 𝜄]

= ∫
∞

−∞
d𝑥 1√

2 𝜋 𝜎normal(𝑥; 𝜇, 𝜎) 𝜄(𝑥)

= ∫
∞

−∞
d𝑥 1√

2 𝜋 𝜎 exp (−1
2 (𝑥 − 𝜇

𝜎 )
2
) 𝑥

= 1√
2 𝜋 𝜎 ∫

∞

−∞
d𝑥 exp (−1

2 (𝑥 − 𝜇
𝜎 )

2
) 𝑥.

Applying the same change of variables as above gives

𝕄(𝜇, 𝜎) = 1√
2 𝜋 𝜎 ∫

∞

−∞
d𝑥 exp (−1

2 (𝑥 − 𝜇
𝜎 )

2
) 𝑥

= 1√
2 𝜋 𝜎 ∫

∞

−∞
d𝑢 𝜎 exp (−1

2𝑢2) (𝜎 𝑢 + 𝜇)

= 𝜎√
2 𝜋 ∫

∞

−∞
d𝑢 exp (−1

2𝑢2) 𝑢 + 𝜇√
2 𝜋 ∫

∞

−∞
d𝑢 exp (−1

2𝑢2) .
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The first integral here vanishes by symmetry while the second integral is the same application
of the general normal integral that we just used,

𝕄(𝜇, 𝜎) = 𝜎√
2 𝜋 ∫

∞

−∞
d𝑢 exp (−1

2𝑢2) 𝑢 + 𝜇√
2 𝜋 ∫

∞

−∞
d𝑢 exp (−1

2𝑢2)

= 0 + 𝜇√
2 𝜋

√
2 𝜋

= 𝜇.

We can now compute all of the central moments at once. The odd central moments all vanish
by symmetry, whereas the even central moments are given by

𝔻2 𝑘(𝜇, 𝜎) = 𝔼normal[(𝜄 − 𝕄(𝜇, 𝜎))2 𝑘 ; 𝜇, 𝜎]
= 𝔼normal[(𝜄 − 𝜇)2 𝑘 ; 𝜇, 𝜎]
= 𝕀𝜆[normal(⋅; 𝜇, 𝜎) ⋅ (𝜄 − 𝜇)2 𝑘]

= ∫
∞

−∞
d𝑥 1√

2 𝜋 𝜎normal(𝑥; 𝜇, 𝜎) (𝜄(𝑥) − 𝜇)2 𝑘

= ∫
∞

−∞
d𝑥 1√

2 𝜋 𝜎 exp (−1
2 (𝑥 − 𝜇

𝜎 )
2
) (𝑥 − 𝜇)2 𝑘

= 1√
2 𝜋 𝜎 ∫

∞

−∞
d𝑥 exp (−1

2 (𝑥 − 𝜇
𝜎 )

2
) (𝑥 − 𝜇)2 𝑘 .

After using the same change of variables again this becomes

𝔻2𝑘(𝜇, 𝜎) = 1√
2 𝜋 𝜎 ∫

∞

−∞
d𝑥 exp (−1

2 (𝑥 − 𝜇
𝜎 )

2
) (𝑥 − 𝜇)2𝑘

= 1√
2 𝜋 𝜎 ∫

∞

−∞
d𝑢 𝜎 exp (−1

2𝑢2) 𝜎2 𝑘 𝑢2𝑘

= 𝜎2 𝑘
√

2 𝜋 ∫
∞

−∞
d𝑢 exp (−1

2𝑢2) 𝑢2𝑘.
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We already know, however, how to evaluate this integral.

𝔻2𝑘(𝜇, 𝜎) = 𝜎2 𝑘
√

2 𝜋 ∫
∞

−∞
d𝑢 exp (−1

2𝑢2) 𝑢2𝑘

= 𝜎2 𝑘
√

2 𝜋
√𝜋 (2 𝑘 − 1)!!

2𝑘 (1
2)

−(1/2+𝑘)

= 𝜎2 𝑘
√

2
(2 𝑘 − 1)!!

2𝑘 21/2+𝑘

= 𝜎2 𝑘
√

2
(2 𝑘 − 1)!!

2𝑘
√

2 2𝑘

= 𝜎2 𝑘 (2 𝑘 − 1)!!.

In particular the variance is given by

ℂ2(𝜇, 𝜎) = 𝔻2(𝜇, 𝜎) = 𝜎2.

Finally the normal cumulative distribution functions are given by

Πnormal(𝑥; 𝜇, 𝜎) = normal( (−∞, 𝑥]; 𝜇, 𝜎 )
= 𝔼normal[𝐼(−∞,𝑥]; 𝜇, 𝜎]

= ∫
+∞

−∞
d𝑥′ normal(𝑥′; 𝜇, 𝜎) 𝐼(−∞,𝑥](𝑥′)

= ∫
𝑥

−∞
d𝑥′ normal(𝑥′; 𝜇, 𝜎)

= ∫
𝑥

−∞
d𝑥′ 1√

2 𝜋𝜎 exp (−1
2 (𝑥′ − 𝜇

𝜎 )
2
)

= 1√
2 𝜋𝜎 ∫

𝑥

−∞
d𝑥′ exp (−1

2 (𝑥′ − 𝜇
𝜎 )

2
) .

After a change of variables to
𝑡 = 𝑥′ − 𝜇√

2 𝜎
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this becomes

Π(𝑥; 𝜇, 𝜎) = 1√
2 𝜋𝜎 ∫

𝑥

−∞
d𝑥′ exp (−1

2 (𝑥′ − 𝜇
𝜎 )

2
) .

= 1√𝜋 ∫
𝑥−𝜇√

2 𝜎

−∞
d𝑡 exp (−𝑡2)

= 1√𝜋 ∫
0

−∞
d𝑡 exp (−𝑡2) + 1√𝜋 ∫

𝑥−𝜇√
2 𝜎

0
d𝑡 exp (−𝑡2)

= 1
2 + 1

2
2√𝜋 ∫

𝑥−𝜇√
2 𝜎

0
d𝑡 exp (−𝑡2)

= 1
2 + 1

2 erf (𝑥 − 𝜇√
2 𝜎

) ,

where
erf(𝑥) 2√𝜋 ∫

𝑥

0
d𝑡 exp (−𝑡2)

is the error function.

License

A repository containing all of the files used to generate this chapter is available on GitHub.

The text and figures in this chapter are copyrighted by Michael Betancourt and licensed under
the CC BY-NC 4.0 license:

https://creativecommons.org/licenses/by-nc/4.0/
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