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In this short case study I demonstrate narratively modeling by implementing the conceptual
analysis discussed in Section 3.3 of my much more comprehensive discussion of the subject. If
you are just getting started with the topic then I recommend first reviewing my chapters on
probabilistic modeling and Bayesian inference, Stan, and model critique and iterative model
development.
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1 The Conceptual Data Generating Process

The basis of narratively generative modeling is domain expertise. We cannot model a data
generating process unless we know something about its possible behaviors!

Moreover we all have our own experiences and none of us share exactly the same domain
expertise. An immediate consequence of this diversity is that there is no universal application
that resonates with everyone’s domain expertise. To make this case study as broadly accessible
as possible I will consider an abstract marketing example and simply provide the relevant
domain expertise whenever it is necessary.

With all of that said let’s say that we are interested in how often people who engage with
a business end up converting to some deeper engagement. For example we might be curious
about how likely someone who is exposed to an advertisement for a business is to visit a
physical location of that business. Alternatively we might be more concerned with how likely
someone who visits a visits a physical location is to buy any item or even a particular item,
or how likely someone who has made a purchase previously is to make a future purchase.
Similarly we might be interested in how likely someone who browses a website is to signup for
a mailing list, download a piece of software, and the like.

These interactions between a potential customer and a business motivate a relatively straight-
forward data generating process. Because a conversion is either made or not individual inter-
actions result in a binary outcome

𝑦 ∈ {0, 1}
where 1 denotes a conversion and 0 denotes no conversion. Any compatible data generating
process is then responsible for defining the probability of these outcomes.

Now the probability of conversion is a complicated object. Conceptually it will depend on the
behavior of each visitor, the behavior of the business with which they engage, and the details
of that engagement. The possibilities can quickly become overwhelming. We can always make
the modeling more manageable, however, by starting as simple as possible.

Before that, however, let’s set up our computing environment and take a look at the available
data.

2 Computational Environment Setup

Here we’ll be using R with the base graphics cleaned up a bit.

par(family="serif", las=1, bty="l",
cex.axis=1, cex.lab=1, cex.main=1,
xaxs="i", yaxs="i", mar = c(5, 5, 3, 5))

2



Next we’ll load Stan and configure a few settings.

library(rstan)
rstan_options(auto_write = TRUE) # Cache compiled Stan programs
options(mc.cores = parallel::detectCores()) # Parallelize chains
parallel:::setDefaultClusterOptions(setup_strategy = "sequential")

Finally we’ll load some utility functions into a local environment to facilitate the implementa-
tion of Bayesian inference.

util <- new.env()

First is a suite Markov chain Monte Carlo diagnostics and estimation tools; this code and
supporting documentation are both available on GitHub.

source('mcmc_analysis_tools_rstan.R', local=util)

Second is a suite of posterior and posterior predictive visualization functions based on Markov
chain Monte Carlo estimation. Again the code and supporting documentation are available
on GitHub.

source('mcmc_visualization_tools.R', local=util)

3 Data Exploration

With our environment sorted let’s load in the available data which consists of two arrays, each
of size N = 1500.

data <- read_rdump('data/logs.data.R')

names(data)

[1] "x" "y" "N"

The array variable y contains the conversion outcomes of previous engagements, with successful
conversions coded as a 1 and unsuccessful conversions coded as a 0. Overall there are a bit
more failures than successes.
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table(data$y)

0 1
859 641

We also have access to the array variable x which contains the total purchases that each
customer has made, in United States Dollar or USD, prior to the observed engagement. Most
customers have spent a moderate amount with a decaying tail of more prolific shoppers.

par(mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_line_hist(data$x, xlab="Previous Purchases (USD)")
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Interestingly no customers have zero prior purchases, indicating that our data set consistent
entirely of repeat customers. This limits what we might be able to learn about entirely new
customers.

par(mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_line_hist(data$x, 0, 10, 1, xlab="Previous Purchases (USD)")

Warning in check_bin_containment(bin_min, bin_max, values): 1494 values (99.6%)
fell above the binning.
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The availability of data beyond just the conversion outcomes allows us to consider more so-
phisticated data generating processes. In particular we can consider not just the aggregate
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conversion probability but also the conversion probability conditional on the previous pur-
chases. Just by looking at the data we can see that this relationship is not trivial.

par(mfrow=c(1, 1), mar=c(5, 5, 1, 1))

bins <- seq(0, 6100, 305)
B <- length(bins) - 1

idxs <- rep(1:B, each=2)
xs <- sapply(1:length(idxs),

function(b) if(b %% 2 == 1) bins[idxs[b]]
else bins[idxs[b] + 1])

binned_freqs <- sapply(1:B, function(b)
mean(data$y[bins[b] < data$x & data$x <= bins[b + 1]]))

binned_freqs <- rep(binned_freqs, each=2)

plot(xs, binned_freqs, type="l", lwd=2,
xlab="Previous Purchases (USD)",
ylab="Binned Conversion Frequencies")
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4 Modeling

Having reasoned through our domain expertise and explored the available data we are finally
ready to consider modeling the relevant data generating process. In order to avoid being
overwhelmed by the potential complexities we will start simple and then iteratively incorporate
more complexity based on the posterior retrodictive performance of each model.

4.1 Model 1

If we assume that all customers behave identically and ignore the previous purchases altogether
then we can model the aggregate conversion outcomes with a Bernoulli observational model
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parameterized by a single probability parameter 𝜃,

𝜋(𝑦1, … , 𝑦𝑁 ∣ 𝜃) =
𝑁

∏
𝑛=1

Bernoulli (𝑦𝑛 ∣ 𝜃).

Any available domain expertise about the reasonable behaviors in this data generating process
informs a prior model for 𝜃. For example if we are confident that the true conversion probability
is less than 0.5 then we could define a prior model with a beta probability density function
that contains 99% of the prior probability to the interval 0 ≤ 𝜃 ≤ 0.5.

par(mfrow=c(1, 1), mar=c(5, 5, 1, 1))

xs <- seq(0, 1, 0.001)
plot(xs, dbeta(xs, 0.5, 5.0), type="l", lwd=2, col=util$c_mid_teal)

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

30

35

xs

db
et

a(
xs

, 0
.5

, 5
)

8



For more on containment prior modeling strategies see Section 3 of my prior modeling chap-
ter.

The prior model then lifts the observational model into a full Bayesian model

𝜋(𝑦1, … , 𝑦𝑁 , 𝜃) = 𝜋(𝑦1, … , 𝑦𝑁 ∣ 𝜃) 𝜋(𝜃)

= [
𝑁

∏
𝑛=1

𝜋(𝑦𝑛 ∣ 𝜃)] 𝜋(𝜃)

= [
𝑁

∏
𝑛=1

Bernoulli (𝑦𝑛 ∣ 𝜃)] 𝜋(𝜃).

We can also visualize the conditional structure of this full Bayesian model with a directed
graph (Figure 1). For an introduction to directed graphs as representations of probability
distributions see Section 4 of my chapter on probability theory on product spaces.

Figure 1: Our first model of customer conversion assumes that all customers behave the same,
allowing their behavior to be captured in a single probability parameter 𝜃.

To evaluate this full Bayesian model on the observed data and extract posterior insights we
will implement it as a probabilistic program in the Stan modeling language. In addition to the
full Bayesian model we also implement posterior predictions in the generated quantities
block. Note that I am focusing on explicitness and clarity in this Stan program and those
that follow; consequently these programs will not always demonstrate coding techniques for
optimal performance.

We can then use the dynamic Hamiltonian Monte Carlo sampler in Stan to quantify the
behavior of the posterior distribution.
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fit <- stan(file="stan_programs/model1.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Before examining the posterior output we need to check for any indications that our com-
putation is inaccurate. Fortunately there are no signs of unfaithful posterior quantification
here.

diagnostics1 <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics1)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples1 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples1, c('theta'))
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Next we need to evaluate the adequacy of our modeling assumptions with posterior retrodictive
checks. Posterior retrodictive checks compare the behavior of the observed data to the behavior
of the posterior predictive distribution for any inconsistencies. For much more on visual
posterior retrodictive checks see Section 1.4.3 of my iterative model development chapter.

Let’s first consider retrodictive performance within the scope of the empirical conversion fre-
quency summary statistic that maps all 𝑁 = 1500 binary outcomes to a single real-valued
outcome,

̂𝑝(𝑦1, … , 𝑦𝑁) = ∑𝑁
𝑛=1 𝑦𝑛
𝑁 .

Fortunately everything looks consistent.

par(mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples1[['p_hat_pred']], 20,
display_name="Aggregate Conversion Frequency",
baseline=mean(data$y))
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Next we can explore how consistent the observed outcomes and posterior predictive outcomes
are in bins of previous purchases. The statistic needed for this check is a bit more complicated;
see Section 2.5 of my Taylor modeling chapter for a detailed construction.

The posterior predictive behavior concentrates around the same point in all of the previous
purchases bins. In hindsight this is unsurprising given our simple model assumptions. On the
other hand the observed data exhibits a nontrivial relationship between conversion frequency
and previous purchases. In particular the disagreement extends beyond the posterior predic-
tive uncertainties, suggesting that our model is not flexible enough to capture the true data
generating behavior.

par(mfrow=c(1, 1), mar=c(5, 5, 1, 1))

pred_names <- sapply(1:data$N, function(n) paste0('y_pred[', n, ']'))
util$plot_conditional_mean_quantiles(samples1, pred_names, data$x,
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0, 6120, 153,
baseline_values=data$y,
xlab="Previous Purchases (USD)",
ylab="Binned Conversion Frequency")
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At this point we could examine posterior inferences, but we have to be careful with their
interpretation. Models that are too rigid often contort themselves in order to accommodate
as much as possible the particular idiosyncrasies of the observed data, pulling the individual
parameters away from any generalizeable interpretation.

Interestingly we see here that the posterior distribution for 𝜃 is pushing up against our prior
model which could be a sign that the prior model is offering some regularization against this
kind of contortion.
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par(mfrow=c(1, 1), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples1[['theta']], 100,
display_name="theta",
flim=c(0, 1))

xs <- seq(0, 1, 0.001)
lines(xs, dbeta(xs, 0.5, 5.0), lwd=2, col=util$c_mid_teal)
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That said until we address the missing features we are just speculating.

4.2 Model 2

An immediate limitation of our initial model is the assumption of a monolithic conversion
probability. We might be able to address the inadequacy of the initial model by allowing the
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conversion probability to vary with the known previous purchases.

Now there are many possible data generating processes that result in coupled behavior between
conversions and previous purchases. Here we will take a slightly less generative approach, as-
suming that the behavior of previous purchases is independent to the behavior of conversions
given previous purchases and modeling the relationship heuristically by replacing the parame-
ter 𝜃 with the output of some parametric function of the previous purchases, 𝜃(𝑥, 𝜓).
Our full Bayesian model then takes the form (Figure 2)

𝜋(𝑦1, … , 𝑦𝑁 , 𝜓; 𝑥1, … , 𝑥𝑁) = [
𝑁

∏
𝑛=1

Bernoulli (𝑦𝑛 ∣ 𝜃 (𝑥𝑛, 𝜓))] 𝜋(𝜓).

Figure 2: One way to allow conversion outcomes to vary with previous purchases is to replace
the conversion probability parameter with the output of a deterministic function of
the previous purchases.

The model is not complete, however, until we have an explicit form for this probability func-
tion. Specifically we need to engineer functional behavior that is consistent with our domain
expertise.

For example let’s say that we believe that the conversion probability should initially rise with
previous purchases but also that any rise cannot continue forever. In other words any rise
should slow and eventually saturate for sufficiently large previous purchases. One way to
accommodate this behavior is with the functional model

𝜃(𝑥, 𝜓) = 𝜃(𝑥, 𝜓1, 𝜓2) = 𝜓1 ⋅ (1 − exp(−𝜓2 ⋅ 𝑥)) .
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theta <- function(x, psi1, psi2) {
psi1 * (-expm1(-psi2 * x))

}

Notice that as 𝜓2 goes to infinity the function 𝜃(𝑥, 𝜓1, 𝜓2) converges to a constant function
and our model reduces to the previous model with 𝜓1 replacing 𝜃. In other words with this
functional form our model expands upon the previous model by adding new functionality but
not excluding any existing functionality. This helps make our iterative model development
robust to potential problems like over-fitting.

At this point we need to develop a prior model for 𝜓1 and 𝜓2 that ensures reasonable functional
behaviors. Here we will assume an independent component prior model,

𝜋(𝜓1, 𝜓1) = 𝜋(𝜓1) 𝜋(𝜓2).

Because 𝜓1 determines the range of possible conversion probabilities we can carry over the
domain expertise that we elicited about the aggregate conversion probability as a conservative
prior model for 𝜓1,

𝜋(𝜓1) = beta(𝜓1 ∣ 0.5, 5.0).

An appropriate prior model for 𝜓2 depends on what we know about how quickly the conversion
probability can saturate. In particular the previous purchases where the conversion probability
reaches half of its maximum is given by

𝜓1
1
2 = 𝜓1 (1 − exp (−𝜓2 ⋅ 𝑥 1

2
))

1
2 = 1 − exp (−𝜓2 ⋅ 𝑥 1

2
)

exp (−𝜓2 ⋅ 𝑥 1
2
) = 1

2
−𝜓2 ⋅ 𝑥 1

2
= log 1

2
𝜓2 = log 2

𝑥 1
2

.

Now let’s say that we are fairly confident that it will take at least 2000 USD of previous
purchases to achieve reach five times 𝑥 1

2
,

5 𝑥 1
2

> 2000 USD
𝑥 1

2
> 400 USD.
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This implies that

𝜓2 = log 2
𝑥 1

2

< log 2
400 USD−1

< 1.7 ⋅ 10−3 USD−1

⪅ 2 kUSD−1.

We can ensure this containment with a half-normal prior model for 𝜓2,

𝜋(𝜓2) = half-normal (𝜓2 ∣ 0, 2
2.57) .

For an explanation of the factor of 2.57 see Section 3.3 of my prior modeling chapter.

In developing this prior model we have considered the two parameters 𝜓1 and 𝜓2 separately
from each other even though they interact when evaluating the conversion probability at a given
value for previous purchases. To verify that there are not any undesired behaviors hiding in
those interactions we can perform a prior pushforward check where we visualize an ensemble
of possible conversion function behaviors. Fortunately none of these derived behaviors exhibit
any pathological behavior.

J <- 50
nom_colors <- c("#DCBCBC", "#C79999", "#B97C7C",

"#A25050", "#8F2727", "#7C0000")
line_colors <- colormap(colormap=nom_colors, nshades=J)

par(mfrow=c(1, 1), mar=c(5, 5, 3, 1))

plot(0, type='n',
xlim=c(0, 5000), xlab="USD",
ylim=c(0, 1), ylab="Conversion Probability")

for (j in 1:J) {
psi1 <- rbeta(1, 0.5, 5)
psi2 <- abs(rnorm(1, 0, 2 / 2.57))
xs <- seq(0, 5000, 10)
ys <- sapply(xs, function(x) theta(x, psi1, 1e-3 * psi2))
lines(xs, ys, lwd=2, col=line_colors[j])

}
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Armed with a carefully considered prior model we can let loose our expanded model onto the
observed data.

fit <- stan(file="stan_programs/model2.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Fortunately the computational diagnostics are clean.

diagnostics2 <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics2)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.
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samples2 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples2,

c('psi1', 'psi2'))
util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

The retrodictive behavior in the empirical frequency summary statistic also looks good.

par(mfrow=c(1, 1), mar=c(5, 5, 3, 1))

util$plot_expectand_pushforward(samples2[['p_hat_pred']], 20,
display_name="Aggregate Conversion Frequency",
baseline=mean(data$y))
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While the retrodictive behavior in the binned empirical frequencies is a substantial improve-
ment to that of the previous model it still leaves much to be desired. In particular the posterior
predictive behavior starts at zero conversion frequency whereas the observed conversion fre-
quencies appear to start at a non-zero value.

par(mfrow=c(1, 1), mar=c(5, 5, 3, 1))

pred_names <- sapply(1:data$N, function(n) paste0('y_pred[', n, ']'))
util$plot_conditional_mean_quantiles(samples2, pred_names, data$x,

0, 6120, 153,
baseline_values=data$y,
xlab="Previous Purchases (USD)",
ylab="Binned Conversion Frequency")
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We can focus on these discrepancies by zooming into smaller previous purchases.
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par(mfrow=c(1, 1), mar=c(5, 5, 3, 1))

pred_names <- sapply(1:data$N, function(n) paste0('y_pred[', n, ']'))
util$plot_conditional_mean_quantiles(samples2, pred_names, data$x,

0, 1000, 50,
baseline_values=data$y,
xlab="Previous Purchases (USD)",
ylab="Binned Conversion Frequency")

Warning in check_bin_containment(bin_min, bin_max, obs_xs, "conditioning
value"): 809 conditioning values (53.9%) fell above the binning.
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The challenge now is to leverage our domain expertise into a hypothesize about what could
be inadequate about our current modeling assumptions. Why might new customers with no
previous purchases exhibit a non-zero conversion probability?
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4.3 Model 3

One of the subtle issues with domain expertise is that it takes energy and time to transform
from implicit, qualitative information to explicit, quantitative information. After a finite
amount of effort we will only ever be working with a finite amount of our, or our team’s,
domain expertise. The challenge to making elicitation productive is identifying what kind
of domain expertise to elicit. Conveniently modeling problems are often highly effective at
triggering unused knowledge.

For example in trying to reason about non-zero initial conversion probabilities we might re-
member, be informed by our collaborators, or even learn from public literature that our target
market is not homogeneous but instead consists of typical customers and another, more en-
gaged group of special customers. This might happen, for instance, when the engagement we
are offering is branded with a popular cultural icon, such as a sports team or celebrity, and fans
of that icon will have the same propensity to engage regardless of their previous business.

This narrative suggests not one but rather two observational models:

Bernoulli (𝑦𝑛 ∣ 𝜃 (𝑥𝑛, 𝜓))

for the regular customers and
Bernoulli (𝑦𝑛 ∣ 𝜃VIP)

for the very important customers, or VIPs.

The problem, however, is that we don’t know to which of these groups a given customer in our
observed data belongs, and hence which data generating process to apply. In order to account
for the possibility that each customer could belong to either group we can appeal to a mixture
model with the mixture parameter 𝜆 determining the overall proportion of VIP customers
(Figure 3),

𝜋(𝑦1, … , 𝑦𝑁 ,𝜓, 𝜃VIP, 𝜆; 𝑥1, … , 𝑥𝑁)

= [
𝑁

∏
𝑛=1

(1 − 𝜆) ⋅ Bernoulli (𝑦𝑛 ∣ 𝜃 (𝑥𝑛, 𝜓)) + 𝜆 ⋅ Bernoulli (𝑦𝑛 ∣ 𝜃VIP)]

⋅ 𝜋(𝜓) 𝜋(𝜃VIP) 𝜋(𝜆).

All that remains is a prior model for the proportion of VIP customers 𝜆 and the conversion
probability of the VIP customers 𝜃VIP. As always these prior models depend on our domain
expertise, which in this case is entirely hypothetical. For example if are aware of an ongoing
promotion that is likely to resonate with the VIP customers then we might engineer a prior
model that concentrates on large values of 𝜃VIP. Here we’ll take a diffuse prior model for 𝜆,

𝜋(𝜆) = beta(𝜆 ∣ 1, 1),
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Figure 3: A mixture model allows us to integrate two distinct data generating processes to-
gether even when we don’t know from which data generating process a given obser-
vation was drawn.

and a prior model that contains 𝜃VIP above 0.5 to account for the higher engagement,

𝜋(𝜃VIP) = beta(𝜃VIP ∣ 5.0, 0.5).

Let’s implement this further expanded model in Stan and then take it for a spin.

fit <- stan(file="stan_programs/model3.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Unfortunately the computational diagnostics are no longer as quiet as they have been. The
divergent transitions indicate that there are model configurations consistent with the data that
Stan has not been able to explore. For more on dealing with divergences see my chapter on
inferential degeneracy.

diagnostics3 <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics3)

Chain 1: 2 of 1024 transitions (0.2%) diverged.

Chain 2: 2 of 1024 transitions (0.2%) diverged.
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Chain 3: 8 of 1024 transitions (0.8%) diverged.

Chain 4: 7 of 1024 transitions (0.7%) diverged.

Divergent Hamiltonian transitions result from unstable numerical
trajectories. These instabilities are often due to degenerate target
geometry, especially "pinches". If there are only a small number of
divergences then running with adept_delta larger than 0.801 may reduce
the instabilities at the cost of more expensive Hamiltonian
transitions.

samples3 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples3,

c('psi1', 'psi2',
'lambda', 'theta_VIP'))

util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

One way that we can identify where problems might be arising in the model configuration
space is to examine pairs plots with the divergent and non-divergent Markov chain iterations
drawn in different colors. To better assess the computational issues we’ll first unconstrain each
parameter, mirroring how Stan automatically accommodates parameter constraints.

names <- c('psi1', 'psi2', 'lambda', 'theta_VIP')
util$plot_div_pairs(names, names, samples3, diagnostics3,

transforms=list("psi1" = 2, "psi2" = 1,
"lambda" = 2, "theta_VIP" = 2))

23



−1.5 −0.5 0.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

logit(psi1)

lo
g(

ps
i2

)

−1.5 −0.5 0.5

−1.5

−1.0

−0.5

logit(psi1)

lo
gi

t(
la

m
bd

a)
−1.5 −0.5 0.5

2

4

6

8

10

12

14

logit(psi1)

lo
gi

t(
th

et
a_

V
IP

)

−1.5 −0.5 0.5

−1.5

−1.0

−0.5

log(psi2)

lo
gi

t(
la

m
bd

a)

−1.5 −0.5 0.5

2

4

6

8

10

12

14

log(psi2)

lo
gi

t(
th

et
a_

V
IP

)

−1.5 −1.0 −0.5

2

4

6

8

10

12

14

logit(lambda)

lo
gi

t(
th

et
a_

V
IP

)

We see that the divergent iterations seem to concentrate in a region of the model configuration
space where the posterior samples of logit(𝜆) and logit(𝜃VIP) pinch together.

util$plot_div_pairs(c('lambda'), c('theta_VIP'), samples3, diagnostics3,
transforms=list("lambda" = 2, "theta_VIP" = 2))
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The problem here is that our model is now sufficiently flexible that many distinct behaviors
are similarly consistent with the observed data. In particular the observations appear to be
insensitive to model configurations with a larger proportion of VIP customers and smaller VIP
conversion probability and model configurations with a smaller proportion of VIP customers
and larger VIP conversion probabilities. The posterior distribution extends out to all of these
consistent model configurations, but those uncertainties frustrate accurate computation.

One way to force a more refined, but more expensive, exploration with the dynamic Hamilto-
nian Monte Carlo sampler in Stan is to force a less aggressive step size adaptation. This is
done by increasing the adapt_delta configuration from it’s default value of 0.8. Here we’ll
try 0.99.

fit <- stan(file="stan_programs/model3.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0,
control=list('adapt_delta'=0.99))
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It looks like this may have done the trick as we no longer see any divergence warnings.

diagnostics3_99 <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics3_99)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples3_99 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples3_99,

c('psi1', 'psi2',
'lambda', 'theta_VIP'))

util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

Indeed comparing the two posterior quantifications we can see that using a less aggressive
adaptation allows us to capture more model behaviors than before. These new model config-
urations have always been consistent with the observed data, they were just ignored by our
first, inaccurate fit.

par(mfrow=c(1, 1))

logit <- function(ps) {
log(ps / (1 - ps))

}

plot(logit(c(samples3_99['lambda'], recursive=TRUE)),
logit(c(samples3_99['theta_VIP'], recursive=TRUE)),
col=util$c_dark, pch=16, cex=0.8,
xlab="logit(lambda)", ylab="logit(theta_VIP)")

points(logit(c(samples3['lambda'], recursive=TRUE)),
logit(c(samples3['theta_VIP'], recursive=TRUE)),
col=util$c_light, pch=16, cex=0.8)
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With an accurate posterior quantification we can consider the retrodictive performance of
this model. The aggregate conversion frequency continues to show no signs of retrodictive
tension.

par(mfrow=c(1, 1), mar=c(5, 5, 3, 1))

util$plot_expectand_pushforward(samples3_99[['p_hat_pred']], 20,
display_name="Aggregate Conversion Frequency",
baseline=mean(data$y))
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Now, however, the retrodictive behavior for the binned conversion frequencies is much better.
Allowing for two groups of customers has finally allowed our model to adequately recover the
behavior of the observed data.

par(mfrow=c(1, 1), mar=c(5, 5, 3, 1))

pred_names <- sapply(1:data$N, function(n) paste0('y_pred[', n, ']'))
util$plot_conditional_mean_quantiles(samples3_99, pred_names, data$x,

0, 6120, 153,
baseline_values=data$y,
xlab="Previous Purchases (USD)",
ylab="Binned Conversion Frequency")
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That said the actual posterior uncertainties each all of the parameters except for 𝜆 are pretty
strong, limiting how well we can inform decisions, predictions, and the like.

par(mfrow=c(2, 2), mar=c(5, 5, 1, 1))

util$plot_expectand_pushforward(samples3_99[['psi1']], 50,
display_name="psi1",
flim=c(0, 1))

xs <- seq(0, 1, 0.01)
lines(xs, dbeta(xs, 0.5, 5.0), lwd=2, col=util$c_mid_teal)

util$plot_expectand_pushforward(samples3_99[['psi2']], 30,
display_name="psi2",
flim=c(0, 4))

xs <- seq(0, 4, 0.05)
lines(xs, 2 * dnorm(xs, 0, 2.0 / 2.57), lwd=2, col=util$c_mid_teal)
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util$plot_expectand_pushforward(samples3_99[['lambda']], 50,
display_name="lambda",
flim=c(0, 1))

xs <- seq(0, 1, 0.01)
lines(xs, dbeta(xs, 1, 1), lwd=2, col=util$c_mid_teal)

util$plot_expectand_pushforward(samples3_99[['theta_VIP']], 50,
display_name="theta_VIP",
flim=c(0, 1))

xs <- seq(0, 1, 0.01)
lines(xs, dbeta(xs, 5.0, 0.5), lwd=2, col=util$c_mid_teal)

0.0 0.2 0.4 0.6 0.8 1.0

psi1

E
st

im
at

ed
 B

in
P

ro
ba

bi
lit

ie
s 

/ B
in

 W
id

th

0 1 2 3 4

psi2

E
st

im
at

ed
 B

in
P

ro
ba

bi
lit

ie
s 

/ B
in

 W
id

th

0.0 0.2 0.4 0.6 0.8 1.0

lambda

E
st

im
at

ed
 B

in
P

ro
ba

bi
lit

ie
s 

/ B
in

 W
id

th

0.0 0.2 0.4 0.6 0.8 1.0

theta_VIP

E
st

im
at

ed
 B

in
P

ro
ba

bi
lit

ie
s 

/ B
in

 W
id

th

We don’t seem to have the enough information to resolve the individual behaviors for the two
data generating processes needed to adequate fit the observed data.
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4.4 Model 4

The benefit of Bayesian inference, at least when implemented with accurate computation, is
that we use all of the model configurations consistent with the observed data and the domain
expertise encoded in the prior model to inform summaries, decisions, predictions, and the like.
This ensures that we don’t for example make fragile statements or risky decisions when we
are burdened with strong posterior uncertainties. That said robustness to large uncertainties
doesn’t mean that smaller uncertainties are not still preferable!

Here our ignorance about the customer categorization dilutes how well the data separately
inform the two component behaviors. An immediate way to improve our inferences is to incor-
porate additional information about either behavior. In a Bayesian analysis this information
can be introduced through either the prior model or the observational model.

For example let’s say that upon hearing about our inferential frustrations a colleague mentions
the existence of an auxiliary set of observed conversions

𝑦aux
1 , … , 𝑦aux

𝑁aux

that is sensitive to only VIP customers.

aux_data <- read_rdump('data/aux_logs.data.R')

names(aux_data)

[1] "N_aux" "y_aux"

Indeed these observations exhibit very different aggregate behavior than our initial observa-
tions.

table(data$y)

0 1
859 641

table(aux_data$y_aux)

0 1
14 186
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If we can integrate a data generating process for this new data and our current model into
a single narratively generative model then these auxiliary observations will directly inform
𝜃VIP, allowing our initial observations to better inform 𝜆 and 𝜓 = (𝜓1, 𝜓2) all while taking
into account the subtle coupling and even any redundancies between the component data
generating processes. Because this new data depends on only 𝜃VIP building a consistent joint
model is particularly straightforward (Figure 4),

𝜋(𝑦1, … , 𝑦𝑁 ,𝑦aux
1 , … , 𝑦aux

𝑁aux , 𝜓, 𝜃VIP, 𝜆; 𝑥1, … , 𝑥𝑁)
𝜋(𝑦1, … , 𝑦𝑁 ∣ 𝜓, 𝜃VIP, 𝜆, 𝑥1, … , 𝑥𝑁)

⋅ 𝜋(𝑦aux
1 , … , 𝑦aux

𝑁aux ∣ 𝜃VIP)
⋅ 𝜋(𝜓, 𝜃VIP, 𝜆)

= [
𝑁

∏
𝑛=1

𝜆 ⋅ Bernoulli (𝑦𝑛 ∣ 𝜃 (𝑥𝑛, 𝜓)) + (1 − 𝜆) ⋅ Bernoulli (𝑦𝑛 ∣ 𝜃VIP)]

⋅ [
𝑁aux

∏
𝑛=1

Bernoulli (𝑦aux
𝑛 ∣ 𝜃VIP)]

⋅ 𝜋(𝜓) 𝜋(𝜃VIP) 𝜋(𝜆).

Figure 4: A joint model that incorporates multiple data generating processes allows us to com-
bine disparate sources of data together into more precise, but consistent, inferences.
Here we combine our initial observations that could have been generated from one
of two data generating processes with auxiliary observations that are unambiguously
generated from a third data generating process that depends on only 𝜃VIP.

We can now implement this expanded model in the Stan modeling language, being careful to
also include posterior predictions for the new observations.
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data <- c(data, aux_data)

fit <- stan(file="stan_programs/model4.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Pleasantly we no longer see signs of computational issues when working with the default
adaptation settings. This suggests that the additional data may indeed have improved the
posterior uncertainties.

diagnostics4 <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics4)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples4 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples4,

c('psi1', 'psi2',
'lambda', 'theta_VIP'))

util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

None of our visual retrodictive checks indicate any model inadequacies, including the aggregate
conversion frequency of the newly incorporated data.

par(mfrow=c(1, 2), mar=c(5, 5, 3, 1))

util$plot_expectand_pushforward(samples4[['p_hat_pred']], 20,
display_name="Aggregate Conversion Frequency",
baseline=mean(data$y),
main="Main Observations")

util$plot_expectand_pushforward(samples4[['p_hat_aux_pred']], 10,
display_name="Aggregate Conversion Frequency",
baseline=mean(data$y_aux),
main="Auxililary Observations")

33



0.40 0.45 0.50

Main Observations

Aggregate Conversion Frequency

E
st

im
at

ed
 B

in
P

ro
ba

bi
lit

ie
s 

/ B
in

 W
id

th

0.80 0.90 1.00

Auxililary Observations

Aggregate Conversion Frequency

E
st

im
at

ed
 B

in
P

ro
ba

bi
lit

ie
s 

/ B
in

 W
id

th

par(mfrow=c(1, 1), mar=c(5, 5, 3, 1))

pred_names <- sapply(1:data$N, function(n) paste0('y_pred[', n, ']'))
util$plot_conditional_mean_quantiles(samples4, pred_names, data$x,

0, 6120, 153,
baseline_values=data$y,
xlab="Previous Purchases (USD)",
ylab="Binned Conversion Frequency")
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Have our posterior uncertainties actually been reduced by the addition of these auxiliary obser-
vations? The marginal posterior inferences for 𝜓1 and 𝜓2 are similar to what we encountered
previously.

par(mfrow=c(2, 2), mar=c(5, 5, 2, 1))

util$plot_expectand_pushforward(samples3_99[['psi1']], 50,
display_name="psi1",
flim=c(0, 1),
main="Model 3")

xs <- seq(0, 1, 0.01)
lines(xs, dbeta(xs, 0.5, 5.0), lwd=2, col=util$c_mid_teal)

util$plot_expectand_pushforward(samples4[['psi1']], 50,
display_name="psi1",
flim=c(0, 1),
main="Model 4")
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xs <- seq(0, 1, 0.01)
lines(xs, dbeta(xs, 0.5, 5.0), lwd=2, col=util$c_mid_teal)

util$plot_expectand_pushforward(samples3_99[['psi2']], 30,
display_name="psi2",
flim=c(0, 4),
main="Model 3")

xs <- seq(0, 4, 0.05)
lines(xs, 2 * dnorm(xs, 0, 2.0 / 2.57), lwd=2, col=util$c_mid_teal)

util$plot_expectand_pushforward(samples4[['psi2']], 30,
display_name="psi2",
flim=c(0, 4),
main="Model 4")

xs <- seq(0, 4, 0.05)
lines(xs, 2 * dnorm(xs, 0, 2.0 / 2.57), lwd=2, col=util$c_mid_teal)
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Looking at the corresponding pairs plot we can see that there are many different configura-
tions of the conversion probability function consistent with the observed data and our domain
expertise: larger maximum conversion probabilities can be accommodated by reducing the
speed of saturation and vice versa. In order to better inform these two parameters we would
probably need to collect more conversion data at larger previous purchases.

par(mfrow=c(1, 1))

plot(c(samples4['psi1'], recursive=TRUE),
c(samples4['psi2'], recursive=TRUE),
col=util$c_dark, pch=16, cex=0.8,
xlab="psi1", ylab="psi2")
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On the other hand the marginal posterior distribution for 𝜆 suppresses large values than
before.

par(mfrow=c(1, 2), mar=c(5, 5, 2, 1))

util$plot_expectand_pushforward(samples3_99[['lambda']], 50,
display_name="lambda",
flim=c(0, 1),
main="Model 3")

xs <- seq(0, 1, 0.01)
lines(xs, dbeta(xs, 1, 1), lwd=2, col=util$c_mid_teal)

util$plot_expectand_pushforward(samples4[['lambda']], 50,
display_name="lambda",
flim=c(0, 1),
main="Model 4")
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xs <- seq(0, 1, 0.01)
lines(xs, dbeta(xs, 1, 1), lwd=2, col=util$c_mid_teal)
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More importantly the marginal posterior distribution for 𝜃VIP now strongly contracts away
from the prior model.

par(mfrow=c(1, 2), mar=c(5, 5, 2, 1))
util$plot_expectand_pushforward(samples3_99[['theta_VIP']], 50,

display_name="theta_VIP",
flim=c(0, 1),
main="Model 3")

xs <- seq(0, 1, 0.01)
lines(xs, dbeta(xs, 5.0, 0.5), lwd=2, col=util$c_mid_teal)
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util$plot_expectand_pushforward(samples4[['theta_VIP']], 50,
display_name="theta_VIP",
flim=c(0, 1),
main="Model 4")

xs <- seq(0, 1, 0.01)
lines(xs, dbeta(xs, 5.0, 0.5), lwd=2, col=util$c_mid_teal)
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4.5 Hypothetical Predictions

Now that we can reasonably disentangle all of the data generating behaviors we can use them
to inform inferences, decisions, and predictions about new circumstances. These tasks are
ubiquitous in both science and industry but they are denoted by a wildly confusing array of
adjectives, such as hypothetical, counterfactual, out-of-sample, generalized, and the like.
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For example let’s say that we want to understand what would happen if we could redesign
the customer experience to exclude VIP customers entirely. In this case the behavior of the
regular customers would not be properly modeled by

Bernoulli (𝑦𝑛 ∣ 𝜃 (𝑥𝑛, 𝜓)) + (1 − 𝜆) ⋅ Bernoulli (𝑦𝑛 ∣ 𝜃VIP)
nor

Bernoulli (𝑦aux
𝑛 ∣ 𝜃VIP)

but rather
Bernoulli (𝑦𝑛 ∣ 𝜃 (𝑥𝑛, 𝜓)).

Fortunately we can readily expand our model to accommodate this new behavior (Figure 5).

Figure 5: Narratively generative modeling allows us to consider not just the data generating
processes responsible for observed data but also those that might be responsible for
data to which we do not yet have access, such as the observations that would be
generated by hypothetical or future measurements.

In order to actually implement these new, hypothetical predictions we need to determine
appropriate values for the previous purchases. This is complicated by the fact that we have
been explicitly modeling these values! Although this might initially come across as a burden
it can actually be a really useful opportunity. For example if we want to analyze the behavior
across all possible previous purchases we can select previous purchases from a uniform grid of
values.
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x_grid <- seq(0, 5000, 125)
data$N_hyp <- 2050
data$x_hyp <- rep(x_grid, each=50)

Incorporating these new predictions into a Stan program just requires expanding the data and
generated quantities blocks. The parameters and model blocks remain exactly the same.
We are not changing our inferences, just what we do with that information.

fit <- stan(file="stan_programs/model5.stan",
data=data, seed=8438338,
warmup=1000, iter=2024, refresh=0)

Although of model block is the same as Model 4 the generated quantities block of Model 5
is different. While running this different code will consume pseudo-random number generate
state differently than that of Model 4 and, consequently, there is a chance that the realized
Markov chains will encounter different pathologies. Because of this we’ll need to double check
the computational diagnostics. Fortunately no new warnings have arisen.

diagnostics5 <- util$extract_hmc_diagnostics(fit)
util$check_all_hmc_diagnostics(diagnostics5)

All Hamiltonian Monte Carlo diagnostics are consistent with reliable
Markov chain Monte Carlo.

samples5 <- util$extract_expectand_vals(fit)
base_samples <- util$filter_expectands(samples5,

c('psi1', 'psi2',
'lambda', 'theta_VIP'))

util$check_all_expectand_diagnostics(base_samples)

All expectands checked appear to be behaving well enough for reliable
Markov chain Monte Carlo estimation.

As expected our predictions for the new circumstances don’t look like any of our retrodic-
tions. The hypothetical data generating process yields conversion frequencies that increase
but quickly saturate with increasing previous purchases but are not contaminated by VIP
customers. This results in conversion frequencies that vary with previous purchases but are
uniformly smaller than what we see in the observed data.
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par(mfrow=c(1, 3), mar=c(5, 5, 3, 1))

pred_names <- sapply(1:data$N, function(n) paste0('y_pred[', n, ']'))
util$plot_conditional_mean_quantiles(samples5, pred_names, data$x,

0, 5000, 150,
xlab="Previous Purchases (USD)",
ylab="Binned Conversion Frequency",
display_ylim=c(0, 1),
main="Main Retrodictions")

Warning in check_bin_containment(bin_min, bin_max, obs_xs, "conditioning
value"): 6 conditioning values (0.4%) fell above the binning.

pred_names <- sapply(1:data$N_aux, function(n) paste0('y_aux_pred[', n, ']'))
probs <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)

mean_quantiles <- rep(0, 9)
for (c in 1:4) {
values <- t(sapply(pred_names, function(name) samples5[[name]][c,]))
means <- sapply(1:1024, function(s) mean(values[,s]))
mean_quantiles <- mean_quantiles + quantile(means, probs=probs) / 4

}

plot(1, type="n", main="Auxililary Retrodictions",
xlim=c(0, 5000), xlab="Previous Purchases (USD)",
ylim=c(0, 1), ylab="Binned Conversion Frequency")

polygon(c(0, 5000, 5000, 0),
c(mean_quantiles[1], mean_quantiles[1],
mean_quantiles[9], mean_quantiles[9]),

col=util$c_light, border = NA)
polygon(c(0, 5000, 5000, 0),

c(mean_quantiles[2], mean_quantiles[2],
mean_quantiles[8], mean_quantiles[8]),

col=util$c_light_highlight, border = NA)
polygon(c(0, 5000, 5000, 0),

c(mean_quantiles[3], mean_quantiles[3],
mean_quantiles[7], mean_quantiles[7]),

col=util$c_mid, border = NA)
polygon(c(0, 5000, 5000, 0),

c(mean_quantiles[4], mean_quantiles[4],
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mean_quantiles[6], mean_quantiles[6]),
col=util$c_mid_highlight, border = NA)

lines(c(0, 5000), c(mean_quantiles[5], mean_quantiles[5]),
col=util$c_dark, lwd=2)

pred_names <- sapply(1:data$N_hyp, function(n) paste0('y_hyp_pred[', n, ']'))
util$plot_conditional_mean_quantiles(samples5, pred_names, data$x_hyp,

0, 5000, 150,
xlab="Previous Purchases (USD)",
ylab="Binned Conversion Frequency",
display_ylim=c(0, 1),
main="Hypothetical Predictions")
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5 Conclusion

While I have intentionally made this example as simple as possible the modeling principles
that is demonstrates generalize to much more sophisticated problems.

For example we might be interested in the interaction between individual customers and indi-
vidual products in which case we would need to model the particular proclivity of a potential
customer to certain kinds of products or even certain product properties and how that procliv-
ity manifests in observed sales, survey outcomes, focus group feedback, or even combinations
thereof. Once we have developed an adequate model we could then use it to predict how sales
change as customer behavior and/or product behavior inevitably evolves.

While we have been using a marketing example these ideas are just are relevant to science. In
order to inform robust scientific insights we need to model not just the phenomena of interest
but also the experiments that we use to probe them. To consistently accumulate knowledge
across multiple experiments we need to account for their idiosyncrasies. Similarly to make
accurate predictions about the performance of new experiments we need to account for our
uncertainty in the relevant phenomenological and the potential experimental behaviors.

As with any tool narratively generative modeling requires experience to use as effectively
as possible. All we have to do to start building that experience, however, is to actively
consider what data generating processes we want to model in a given application and what
data generating processes do our analyses implicitly assume.

Acknowledgements

I thank jd for helpful comments.

A very special thanks to everyone supporting me on Patreon: Adam Fleischhacker, Adriano
Yoshino, Alessandro Varacca, Alexander Noll, Alexander Rosteck, Andrea Serafino, Andrew
Mascioli, Andrew Rouillard, Andrew Vigotsky, Ara Winter, Austin Rochford, Avraham Adler,
Ben Matthews, Ben Swallow, Benoit Essiambre, Bertrand Wilden, Bradley Kolb, Brandon
Liu, Brendan Galdo, Brynjolfur Gauti Jónsson, Cameron Smith, Canaan Breiss, Cat Shark,
CG, Charles Naylor, Charles Shaw, Chase Dwelle, Chris Jones, Christopher Mehrvarzi, Colin
Carroll, Colin McAuliffe, Damien Mannion, dan mackinlay, Dan W Joyce, Dan Waxman,
Dan Weitzenfeld, Daniel Edward Marthaler, Daniel Saunders, Darshan Pandit, Darthmaluus
, David Galley, David Wurtz, Doug Rivers, Dr. Jobo, Dr. Omri Har Shemesh, Dylan Maher,
Ed Cashin, Edgar Merkle, Eric LaMotte, Ero Carrera, Eugene O’Friel, Felipe González, Fer-
gus Chadwick, Finn Lindgren, Florian Wellmann, Geoff Rollins, Håkan Johansson, Hamed
Bastan-Hagh, Hauke Burde, Hector Munoz, Henri Wallen, hs, Hugo Botha, Ian, Ian Costley,
idontgetoutmuch, Ignacio Vera, Ilaria Prosdocimi, Isaac Vock, J, J Michael Burgess, jacob
pine, Jair Andrade, James Hodgson, James Wade, Janek Berger, Jason Martin, Jason Pekos,
Jason Wong, jd, Jeff Burnett, Jeff Dotson, Jeff Helzner, Jeffrey Erlich, Jessica Graves, Joe

45



Sloan, Joe Wagner, John Flournoy, Jonathan H. Morgan, Jonathon Vallejo, Joran Jongerling,
JU, Justin Bois, Kádár András, Karim Naguib, Karim Osman, Kejia Shi, Kristian Gårdhus
Wichmann, Lars Barquist, lizzie , LOU ODETTE, Luís F, Marcel Lüthi, Marek Kwiatkowski,
Mark Donoghoe, Markus P., Márton Vaitkus, Matt Moores, Matthew, Matthew Kay, Matthieu
LEROY, Mattia Arsendi, Maurits van der Meer, Michael DeWitt, Michael Dillon, Michael
Lerner, Mick Cooney, Mike Lawrence, N Sanders, N.S. , Name, Nathaniel Burbank, Neel,
Nic Fishman, Nicholas Clark, Nicholas Cowie, Nick S, Octavio Medina, Ole Rogeberg, Oliver
Crook, Patrick Kelley, Patrick Boehnke, Pau Pereira Batlle, Peter Johnson, Pieter van den
Berg, ptr, Ramiro Barrantes Reynolds, Raúl Peralta Lozada, Ravin Kumar, Rémi , Rex Ha,
Riccardo Fusaroli, Richard Nerland, Robert Frost, Robert Goldman, Robert kohn, Robin Tay-
lor, Ryan Grossman, Ryan Kelly, S Hong, Sean Wilson, Sergiy Protsiv, Seth Axen, shira,
Simon Duane, Simon Lilburn, sssz, Stan_user, Stephen Lienhard, Stew Watts, Stone Chen,
Susan Holmes, Svilup, Tao Ye, Tate Tunstall, Tatsuo Okubo, Teresa Ortiz, Theodore Dasher,
Thomas Siegert, Thomas Vladeck, Tobychev , Tomáš Frýda, Tony Wuersch, Virginia Fisher,
Vladimir Markov, Wil Yegelwel, Will Farr, woejozney, yolhaj , yureq , Zach A, Zad Rafi, and
Zhengchen Cai.

License

A repository containing all of the files used to generate this chapter is available on GitHub.

The code in this case study is copyrighted by Michael Betancourt and licensed under the new
BSD (3-clause) license:

https://opensource.org/licenses/BSD-3-Clause

The text and figures in this case study are copyrighted by Michael Betancourt and licensed
under the CC BY-NC 4.0 license:

https://creativecommons.org/licenses/by-nc/4.0/

Original Computing Environment

writeLines(readLines(file.path(Sys.getenv("HOME"), ".R/Makevars")))

CC=clang

CXXFLAGS=-O3 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macro-redefined -Wno-unneeded-internal-declaration
CXX=clang++ -arch x86_64 -ftemplate-depth-256
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CXX14FLAGS=-O3 -mtune=native -march=native -Wno-unused-variable -Wno-unused-function -Wno-macro-redefined -Wno-unneeded-internal-declaration -Wno-unknown-pragmas
CXX14=clang++ -arch x86_64 -ftemplate-depth-256

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.4.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] colormap_0.1.4 rstan_2.32.6 StanHeaders_2.32.7

loaded via a namespace (and not attached):
[1] gtable_0.3.4 jsonlite_1.8.8 compiler_4.3.2 Rcpp_1.0.11
[5] stringr_1.5.1 parallel_4.3.2 gridExtra_2.3 scales_1.3.0
[9] yaml_2.3.8 fastmap_1.1.1 ggplot2_3.4.4 R6_2.5.1
[13] curl_5.2.0 knitr_1.45 tibble_3.2.1 munsell_0.5.0
[17] pillar_1.9.0 rlang_1.1.2 utf8_1.2.4 V8_4.4.1
[21] stringi_1.8.3 inline_0.3.19 xfun_0.41 RcppParallel_5.1.7
[25] cli_3.6.2 magrittr_2.0.3 digest_0.6.33 grid_4.3.2
[29] lifecycle_1.0.4 vctrs_0.6.5 evaluate_0.23 glue_1.6.2
[33] QuickJSR_1.0.8 codetools_0.2-19 stats4_4.3.2 pkgbuild_1.4.3
[37] fansi_1.0.6 colorspace_2.1-0 rmarkdown_2.25 matrixStats_1.2.0
[41] tools_4.3.2 loo_2.6.0 pkgconfig_2.0.3 htmltools_0.5.7
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Stan
Program 1 model1.stan

data {
// Observed data
int<lower=1> N; // Number of unique visits
array[N] int<lower=0, upper=1> y; // Conversion indicator

}

parameters {
real<lower=0, upper=1> theta; // Conversion probability

}

model {
// Prior model
theta ~ beta(0.5, 5.0); // 0 <~ theta <~ 0.5

// Observational model
for (n in 1:N) {

target += bernoulli_lpmf(y[n] | theta);
}

}

generated quantities {
// Posterior predictions
array[N] real y_pred;
real p_hat_pred;

for (n in 1:N) {
y_pred[n] = bernoulli_rng(theta);

}
p_hat_pred = mean(y_pred);

}
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Stan
Program 2 model2.stan

functions {
// Saturating conversion probability function
real theta(real x, real psi1, real psi2) {

return psi1 * (-expm1(-psi2 * x));
}

}

data {
// Observed data
int<lower=1> N; // Number of unique visits
array[N] int<lower=0, upper=1> y; // Conversion indicator
array[N] real x; // Previous purchases (USD)

}

parameters {
real<lower=0, upper=1> psi1; // Maximum conversion probability
real<lower=0> psi2; // Rate of saturation (1 / kUSD)

}

model {
// Prior model
psi1 ~ beta(0.5, 5.0); // 0 <~ psi1 <~ 0.5
psi2 ~ normal(0, 2.0 / 2.57); // 0 <~ psi2 <~ 2

// Observational model
for (n in 1:N) {

target += bernoulli_lpmf(y[n] | theta(x[n], psi1, 1e-3 * psi2));
}

}

generated quantities {
// Posterior predictions
array[N] real y_pred;
real p_hat_pred;

for (n in 1:N) {
y_pred[n] = bernoulli_rng(theta(x[n], psi1, 1e-3 * psi2));

}
p_hat_pred = mean(y_pred);

}
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Stan
Program 3 model3.stan

functions {
// Saturating conversion probability function
real theta(real x, real psi1, real psi2) {

return psi1 * (-expm1(-psi2 * x));
}

}

data {
// Observed data
int<lower=1> N; // Number of unique visits
array[N] int<lower=0, upper=1> y; // Conversion indicator
array[N] real x; // Previous purchases (USD)

}

parameters {
real<lower=0, upper=1> psi1; // Maximum conversion probability
real<lower=0> psi2; // Rate of saturation (1 / kUSD)
real<lower=0, upper=1> lambda; // Proportion of VIP visitors
real<lower=0, upper=1> theta_VIP; // VIP conversion probability

}

model {
// Prior model
psi1 ~ beta(0.5, 5.0); // 0 <~ psi1 <~ 0.5
psi2 ~ normal(0, 2.0 / 2.57); // 0 <~ psi2 <~ 2
lambda ~ beta(1, 1); // Uniform probability density function
theta_VIP ~ beta(5.0, 0.5); // 0.5 <~ theta_VIP <~ 1

// Observational model
for (n in 1:N) {

target += log_mix(lambda,
bernoulli_lpmf(y[n] | theta_VIP),
bernoulli_lpmf(y[n] | theta(x[n], psi1, 1e-3 * psi2)));

}
}

generated quantities {
// Posterior predictions
array[N] real y_pred;
real p_hat_pred;

for (n in 1:N) {
if (bernoulli_rng(lambda)) {
y_pred[n] = bernoulli_rng(theta_VIP);

} else {
y_pred[n] = bernoulli_rng(theta(x[n], psi1, 1e-3 * psi2));

}
}
p_hat_pred = mean(y_pred);

}
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Stan
Program 4 model4.stan

functions {
// Saturating conversion probability function
real theta(real x, real psi1, real psi2) {

return psi1 * (-expm1(-psi2 * x));
}

}

data {
// Observed data
int<lower=1> N; // Number of unique visits
array[N] int<lower=0, upper=1> y; // Conversion indicator
array[N] real x; // Previous purchases (USD)

int<lower=1> N_aux; // Number of VIP-only visits
array[N_aux] int<lower=0, upper=1> y_aux; // Conversion indicator

}

parameters {
real<lower=0, upper=1> psi1; // Maximum conversion probability
real<lower=0> psi2; // Rate of saturation (1 / kUSD)
real<lower=0, upper=1> lambda; // Proportion of VIP visitors
real<lower=0, upper=1> theta_VIP; // VIP conversion probability

}

model {
// Prior model
psi1 ~ beta(0.5, 5.0); // 0 <~ psi1 <~ 0.5
psi2 ~ normal(0, 2.0 / 2.57); // 0 <~ psi2 <~ 2
lambda ~ beta(1, 1); // Uniform probability density function
theta_VIP ~ beta(5.0, 0.5); // 0.5 <~ theta_VIP <~ 1

// Observational model
for (n in 1:N) {

target += log_mix(lambda,
bernoulli_lpmf(y[n] | theta_VIP),
bernoulli_lpmf(y[n] | theta(x[n], psi1, 1e-3 * psi2)));

}

for (n in 1:N_aux) {
target += bernoulli_lpmf(y_aux[n] | theta_VIP);

}
}

generated quantities {
// Posterior predictions
array[N] real y_pred;
real p_hat_pred;

array[N_aux] real y_aux_pred;
real p_hat_aux_pred;

for (n in 1:N) {
if (bernoulli_rng(lambda)) {
y_pred[n] = bernoulli_rng(theta_VIP);

} else {
y_pred[n] = bernoulli_rng(theta(x[n], psi1, 1e-3 * psi2));

}
}
p_hat_pred = mean(y_pred);

for (n in 1:N_aux) {
y_aux_pred[n] = bernoulli_rng(theta_VIP);

}
p_hat_aux_pred = mean(y_aux_pred);

}
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Stan
Program 5 model5.stan

functions {
// Saturating conversion probability function
real theta(real x, real psi1, real psi2) {

return psi1 * (-expm1(-psi2 * x));
}

}

data {
// Observed data
int<lower=1> N; // Number of unique visits
array[N] int<lower=0, upper=1> y; // Conversion indicator
array[N] real x; // Previous purchases (USD)

int<lower=1> N_aux; // Number of VIP-only visits
array[N_aux] int<lower=0, upper=1> y_aux; // Conversion indicator

// Hypothetical data
int<lower=1> N_hyp;
array[N_hyp] real x_hyp;

}

parameters {
real<lower=0, upper=1> psi1; // Maximum conversion probability
real<lower=0> psi2; // Rate of saturation (1 / kUSD)
real<lower=0, upper=1> lambda; // Proportion of VIP visitors
real<lower=0, upper=1> theta_VIP; // VIP conversion probability

}

model {
// Prior model
psi1 ~ beta(0.5, 5.0); // 0 <~ psi1 <~ 0.5
psi2 ~ normal(0, 2.0 / 2.57); // 0 <~ psi2 <~ 2
lambda ~ beta(1, 1); // Uniform probability density function
theta_VIP ~ beta(5.0, 0.5); // 0.5 <~ theta_VIP <~ 1

// Observational model
for (n in 1:N) {

target += log_mix(lambda,
bernoulli_lpmf(y[n] | theta_VIP),
bernoulli_lpmf(y[n] | theta(x[n], psi1, 1e-3 * psi2)));

}

for (n in 1:N_aux) {
target += bernoulli_lpmf(y_aux[n] | theta_VIP);

}
}

generated quantities {
// Posterior predictions
array[N] real y_pred;
array[N_aux] real y_aux_pred;
array[N_hyp] real y_hyp_pred;

for (n in 1:N) {
if (bernoulli_rng(lambda)) {
y_pred[n] = bernoulli_rng(theta_VIP);

} else {
y_pred[n] = bernoulli_rng(theta(x[n], psi1, 1e-3 * psi2));

}
}

for (n in 1:N_aux) {
y_aux_pred[n] = bernoulli_rng(theta_VIP);

}

for (n in 1:N_hyp) {
y_hyp_pred[n] = bernoulli_rng(theta(x_hyp[n], psi1, 1e-3 * psi2));

}
}
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