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Conditional probability theory provides a rigorous way to decompose probability distributions
over a space 𝑋 into a collection of probability distributions over subsets of 𝑋. This decompo-
sition introduces two powerful new operations into probability theory. Firstly it allows us to
reduce complicated probabilistic calculations over all of 𝑋 into a sequence of potentially-simpler
calculations over the smaller subsets. At the same time it also encodes the information that
we lose when pushing probability distributions forward along non-bijective transformations.
This, in turn, facilitates the practical construction of probability distributions by allowing us
to build them up from more manageable, lower-dimensional components.

That said conditional probability theory can be subtle, and to avoid any confusion our intro-
duction we will need to proceed carefully. We will first learn how to decompose spaces into
subsets before discussing how probability distributions can be decomposed across those sub-
sets. Finally we will dedicate a good bit of time working out how to decompose the probability
density functions that are so critical to practical applications.

1 Decomposing Spaces With Partitions

In Chapter 6, Section 1.2.1 we introduced the notion of a partition (Figure 1b): a collection
of subsets

𝒫 = {c1, … , c𝑖, …},
that are non-empty,

c𝑖 ≠ ∅,
are mutually disjoint,

c𝑖 ∩ c𝑖′≠𝑖 = ∅,
and cover the entire space,

∪𝑖c𝑖 = 𝑋.
A collection of subsets that cover 𝑋 but intersect with each other do not form a valid partition
(Figure 1c), nor does a collection of disjoint subsets that don’t cover all of 𝑋 (Figure 1d).

The individual subsets that form a partition are known as the cells of the partition. A par-
tition can contain a finite number of cells, a countably infinite number of cells, or even an
uncountably infinite number of cells. I will refer to partitions with a finite, countably infi-
nite, and uncountable infinite number of cells as finite, countable, and uncountable partitions,
respectively.

2

https://betanalpha.github.io/assets/chapters_html/density_functions.html#sigma-finite-measures


X

(a)

X

c1

c2 c3

c4

c5 c6

(b)

X

c1

c2 c3

c4

c5 c6

(c)

X

c1

c2 c3

c4

c5

(d)

Figure 1: A partition is a decomposition of (a) an ambient space 𝑋 into (b) a collection of
disjoint subsets. (c) Overlapping subsets that cover 𝑋 do not form a proper partition,
nor do (d) disjoint subsets that do not fully cover 𝑋. We can categorize partitions
by how many subsets they contain as well as the kinds of subsets they contain. For
example a measurable partition consists entirely of disjoint subsets from the ambient
𝜎-algebra, 𝒳.
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A finite partition can always be defined as an explicit list of cells, but this isn’t practical
for countable or uncountable partitions which would require infinitely long lists. In all of
these cases, however, we can implicitly define a partition from the level sets of an appropriate
function.

Consider, for example, a finite partition 𝒫 defined as an explicit list of 𝐼 subsets,

𝒫 = {c1, … , c𝑖, … c𝐼}.

In order to distinguish between the individual cells I have assigned them each a unique numer-
ical label or index from the integers {1, … , 𝐼}. Beyond a notational convenience, we can also
use this indexing to define the partition itself.

The indexing implicitly defines a bijective index function that maps each cell to its corre-
sponding integer index,

𝜒𝒫 ∶ 𝒫 → {1, … , 𝐼}
c𝑖 ↦ 𝑖 .

At the same time we can also define an inclusion function that maps each point in the
ambient space 𝑥 ∈ 𝑋 into the partition cell that contains it,

𝜄𝒫 ∶ 𝑋 → 𝒫
𝑥 ↦ {c𝑖 ∈ 𝒫 ∣ 𝑥 ∈ c𝑖}.

Composing these two functions together defines a third function that maps points in the
ambient space to partition cell indices (Figure 2),

𝜙𝒫 = 𝜒𝒫 ∘ 𝜄𝒫 ∶ 𝑋 → {1, … , 𝐼}
𝑥 ↦ {𝑖 ∈ {1, … , 𝐼} ∣ 𝑥 ∈ c𝑖 ∈ 𝒫}.

Because the partition cells are, by definition, disjoint and cover all of 𝑋 each point 𝑥 ∈ 𝑋 falls
into one, and only one, partition cell. In other words each point is associated with one and
only one partition cell index and 𝜙𝒫 will always be a surjective function.

The level set of 𝜙𝒫 for a given index 𝑖 is then the subset of all input points that fall into the
𝑖th partition cell,

𝜙−1
𝒫 (𝑖) = {𝑥 ∈ 𝑋 ∣ 𝜛𝒫(𝑥) = 𝑖} = c𝑖.

Consequently we can completely reconstruct the cells of the partition 𝒫 from these level sets
(Figure 3),

𝒫 = {c1 = 𝜛−1
𝒫 (1), … , c𝑖 = 𝜛−1

𝒫 (𝑖), … , c𝐼 = 𝜛−1
𝒫 (𝐼)}!

Because the cells in a partition are unordered the exact indexing we use is arbitrary. Different
permutations of the labels define different index functions 𝜒𝒫 and hence different composite
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Figure 2: Any finite partition of a space 𝑋, here 𝒫 = {c1, … , c6}, implicitly defines three
functions. The function 𝜄𝒫 maps each point 𝑋 to the partition cell that contains it
while the function 𝜒𝒫 maps each partition cell to its integer index. The composition
𝜙𝒫 = 𝜒𝒫 ∘ 𝜄𝒫 maps each point directly to the corresponding index.
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Figure 3: The composite function (a) 𝜙𝒫 maps points 𝑥 ∈ 𝑋 to the indices of the partition
cells that contain them. (b) The level sets 𝜙−1

𝒫 (𝑛) map each index to all of the points
contained in the corresponding partition cell. Collectively these level sets completely
reconstruct the initial partition, {𝜙−1

𝒫 (1), 𝜙−1
𝒫 (2), 𝜙−1

𝒫 (3), 𝜙−1
𝒫 (4)} = {c1, c2, c3, c4} =

𝒫.
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functions 𝜙𝒫. The level sets of these functions, however, are always the same, allowing us to
work with whichever indexing might be most convenient in any given application.

Let’s take a breath and summarize what we’ve done so far. A finite partition 𝒫 can be explicitly
defined as a list of disjoint subsets or implicitly defined by an appropriate surjective function.
The advantage of this implicit definition is that it immediately generalizes to any type of
partitions.

Every function 𝑓 ∶ 𝑋 → 𝑌 decomposes the input space 𝑋 into level sets 𝑓−1(𝑦) that are not
only disjoint but also cover all of 𝑋, space,

𝑋 = ⋃
𝑦∈𝑌

𝑓−1(𝑦).

If 𝑓 is surjective then every one if its level sets will also be non-empty, 𝑓−1(𝑦) ≠ ∅ for all
𝑦 ∈ 𝑌 . Consequently the level sets of every surjective function implicitly defines a partition
where each cell is indexed by a unique output value.

If the output space 𝑌 contains a finite number of points then the level sets of 𝑓 define a finite
partition (Figure 4). On the other hand if 𝑌 contains a countably infinite number of points
then the level sets define a countable partition even though we cannot exhaustively list every
cell in practice. Similarly if 𝑌 contains an uncountably infinite number of points then the level
sets define an uncountable partition (Figure 5).

To demonstrate uncountable partitions let’s consider a few examples over the space 𝑋 = ℝ2.
The surjective function

𝑓 ∶ ℝ2 → ℝ
(𝑥1, 𝑥2) ↦ 𝑥1

implicitly defines a partition that decomposes 𝑋 into an uncountable number of real lines, each
of which can be visualized by a vertical line (Figure 6a). Similarly the surjective function

𝑓 ∶ ℝ2 → ℝ+

(𝑥1, 𝑥2) ↦ 𝑟 = √𝑥2
1 + 𝑥2

2

implicitly defines a partition that decomposes 𝑋 into an uncountable number of concentric
arcs with a fixed radii (Figure 6b).

Partitions comprised of measurable subsets are particularly important in probability theory.
When the cells of a partition 𝒫 are all 𝒳-measurable the partition itself becomes a subset of the
defining 𝜎-algebra, 𝒫 ⊂ 𝒳. Unsurprisingly these partitions are referred to as 𝒳-measurable
partitions, or simply measurable partitions when the relevant 𝜎-algebra is unambiguous.

Even if a surjective function is measurable it may not define a measurable partition. Only if
the output space is equipped with a 𝜎-algebra 𝒴 that includes all of the atomic subsets,

{𝑦} ∈ 𝒴
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Figure 4: Every (a) surjective function 𝑓 ∶ 𝑋 → 𝑌 with a finite output space defines (b) a
finite partition of the input space.
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Figure 5: Every surjective function 𝑓 ∶ 𝑋 → 𝑌 with an uncountably infinite output space
defines an uncountable partition of the input space.
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Figure 6: The partitions defined by surjective functions often admit convenient geometric inter-
pretations. (a) For example the function 𝑓 ∶ (𝑥1, 𝑥2) ↦ 𝑥1 decomposes the ambient
space ℝ2 into copies of ℝ, one for each output point 𝑥1 ∈ ℝ. (b) Likewise the function
𝑓 ∶ (𝑥1, 𝑥2) ↦ √𝑥2

1 + 𝑥2
2 decomposes ℝ2 into concentric arcs.

for all 𝑦 ∈ 𝑌 , will the level sets of a measurable function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴) always be
𝒳-measurable subsets of the input space,

𝑓−1(𝑦) = 𝑓∗({𝑦}) ∈ 𝒳.

If 𝒴 does contain all of the atomic subsets, however, then every surjective and (𝒳, 𝒴)-
measurable will define measurable partition cells, and hence a measurable partition.

A 𝜎-algebras that contains of all of the atomic subsets in the ambient space is known as a
Hausdorff 𝜎-algebra. Similarly a space paired with a Hausdorff 𝜎-algebra is known as a
Hausdorff measurable space.

Fortunately all but the most pathological 𝜎-algebras are Hausdorff, and we can pretty safely
assume that every 𝜎-algebra that we will encounter in practice will satisfy this property. Be-
cause all of the functions that we will work with will be measurable we can also safely assume
that the partitions implicitly defined by any surjective function we encounter in practice will
be measurable.

2 Conditioning on Countable And Explicit Partitions

Whether defined explicitly or implicitly, a partition decomposes a space 𝑋 into a collection
of non-empty, non-overlapping subsets. This spatial decomposition then provides the basis
for decomposing probability distributions over 𝑋 into a collection of probability distributions
confined to those subsets. Before tackling the full generality of this procedure we’ll first build
up intuition in the simples case of countable partitions explicitly defined as lists of subsets.

8



2.1 The Law of Total Probability

As we saw in Chapter Four Kolmogorov’s axioms define a probability distribution as consistent
allocation of probability over measurable subsets. Consequently in order to decompose a prob-
ability distribution we need to be able to decompose measurables subset and the probabilities
allocated to them.

Any measurable set x ∈ 𝒳 can be immediately decomposed into its intersections with the cells
of a given partition 𝒫 (Figure 7b),

x = ⋃
c∈𝒫

(x ∩ c) .

Because the partition cells are mutually disjoint these intersections will also be mutually dis-
joint: if c1 ∈ 𝒫 and c2 ∈ 𝒫 are two distinct partition cells then

(x ∩ c1) ∩ (x ∩ c2) = (x ∩ c1) ∩ (c2 ∩ x)
= x ∩ (c1 ∩ c2) ∩ x
= x ∩ ∅ ∩ x
= ∅.

If the partition 𝒫 is countable then any measurable subset x ∈ 𝒳 will decompose into a count-
able number of components. Moreover because 𝜎-algebras are closed under countable unions
then each of these components will also be measurable whenever the partition is measurable.
Consequently we can apply the countable additivity of probability distributions to the decom-
position of any measurable subset induced by a measurable, countable partition (Figure 7c).

In other words the probability allocated to x ∈ 𝒳 decomposes into a sum of the probabilities
allocated to the disjoint partition intersections,

𝜋(x) = 𝜋 (⋃
c∈𝒫

(x ∩ c))

= ∑
c∈𝒫

𝜋(x ∩ c).

This decomposition of probability allocations is referred to as the law of total probability.

2.2 Conditional Probabilities

Now that we can decompose the probabilities allocated to individual measurable subsets we can
consider how to decompose entire probability distributions. To make our first steps towards
this decomposition more manageable let’s begin, however, with a simplifying restriction on the
partition.
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Figure 7: Countable, measurable partitions allow us to decompose probability allocations. (a)
A measurable partition decomposes 𝑋 into four measurable subsets. (b) Every mea-
surable subset x ⊂ 𝒳 decomposes into disjoint intersections with the partition cells.
(c) The probability allocated to x then decomposes into a sum of probabilities allo-
cated to each of these intersections.
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Partitions whose cells are all allocated non-zero probabilities allow us to multiply and divide
by the cell probabilities without fear of dividing by zero. I will refer to a partition where
every cell is not only measurable but also allocated a non-zero probability by the probability
distribution 𝜋,

𝜋(c) > 0
for all c ∈ 𝒫, as a 𝜋-non-null partition.

Taking advantage of this flexibility we can rearrange each term in the law of total probability
to give

𝜋(x) = ∑
c∈𝒫

𝜋(x ∩ c)

= ∑
c∈𝒫

𝜋(x ∩ c) ⋅ 𝜋(c)
𝜋(c)

= ∑
c∈𝒫

𝜋(x ∩ c)
𝜋(c) ⋅ 𝜋(c)

≡ ∑
c∈𝒫

𝜋𝒫(x ∣ c) ⋅ 𝜋(c).

Here each conditional probability

𝜋𝒫(x ∣ c) = 𝜋(x ∩ c)
𝜋(c)

quantifies the proportion of the probability allocated to the intersection of x and the condi-
tioning partition cell, 𝜋(x ∩ c), relative to the total probability allocated to the conditioning
partition cell, 𝜋(c) (Figure Figure 8).

By definition a measurable subset x ∈ 𝒳 that doesn’t overlap with the conditioning partition
cell c is allocated zero conditional probability,

𝜋𝒫(x ∣ c) = 𝜋(x ∩ c)
𝜋(c)

= 𝜋(∅)
𝜋(c)

= 0
𝜋(c)

= 0.

At the same time any measurable subset that completely overlaps with the conditioning par-
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Figure 8: The conditional probability of a measurable subset x given a measurable partition cell
c quantifies the proportion of probability allocated to the intersection x ∩ c relative
to the total probability allocated to the partition cell c.
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tition cell, x ∩ c = c, is allocated full conditional probability,

𝜋𝒫(x ∣ c) = 𝜋(x ∩ c)
𝜋(c)

= 𝜋(c)
𝜋(c)

= 1.

Conditional probabilities look suspiciously like probability allocations that have been restricted
to the domain of the conditioning partition cell. With a little more work we can show that
this suspicion is in fact correct.

2.3 Conditional Probability Distributions Over The Ambient Space

Given a measurable subset x ∈ 𝒳 and a measurable, 𝜋-non-null partition cell c ∈ 𝒫 we
can construct a single conditional probability 𝜋𝒫(x ∣ c). The collection of all conditional
probabilities relative to a particular partition cell c defines a function from measurable subsets
to conditional probabilities,

𝜋𝒫
c ∶ 𝒳 → [0, 1]

x ↦ 𝜋(x ∩ c)
𝜋(c) .

The immediate question is whether or not this function defines a probability distribution. To
answer that question we’ll have to consider the Kolmogorov axioms.

We begin with the first Kolmogorov axiom which requires a function that maps measurable
subsets into probabilities. This matches the inputs and output spaces of 𝜋𝒫

c .

In order to satisfy the second Kolmogorov axiom the probability allocated to the entire ambient
set must be one. Indeed

𝜋𝒫
c (𝑋) = 𝜋(𝑋 ∩ c)

𝜋(c)

= 𝜋(c)
𝜋(c)

= 1.

Finally we need 𝜋𝒫
c to satisfy countable additivity. For any countable collection of measurable

but disjoint subset sets
{x1, … , x𝑗, …}

13



we have

𝜋𝒫
c (∪𝑗x𝑗) = 𝜋( (∪𝑗x𝑗) ∩ c)

𝜋(c)

= 𝜋(∪𝑗(x𝑗 ∩ c))
𝜋(c)

=
∑𝑗 𝜋(x𝑗 ∩ c)

𝜋(c)

= ∑
𝑗

𝜋(x𝑗 ∩ c)
𝜋(c)

= ∑
𝑗

𝜋𝒫
c (x𝑗),

as needed.

With all three Kolmogorov axioms verified we can now formally state that for any partition
cell c the function defined by

𝜋𝒫
c (x) = 𝜋(x ∩ c)

𝜋(c)
defines a probability distribution over the ambient space 𝑋. Formally we say that 𝜋𝒫

c is a
conditional probability distribution.

2.4 Conditional Probability Distributions Over Partition Cells

An important feature of conditional probability distributions is that they much more singular
than we might would expect from a probability distribution over 𝑋. Recall that any measur-
able subset that doesn’t intersect with the conditioning partition cell is always allocated zero
probability,

𝜋𝒫
c (x) = 𝜋𝒫(x ∣ c)

= 𝜋(x ∩ c)
𝜋(c)

= 𝜋(∅)
𝜋(c)

= 0.
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Instead all of the conditional probability concentrates within the conditioning partition cell
itself,

𝜋𝒫
c (c) = 𝜋𝒫(c ∣ c)

= 𝜋(c ∩ c)
𝜋(c)

= 𝜋(c)
𝜋(c)

= 1!

Intuitively this suggests that we can interpret a conditional probability distribution as a re-
striction of the initial probability distribution to a particular partition cell. To formalize this
intuition, however, we have to define what it means to restrict not only the elements of (𝑋, 𝒳)
to a partition cell but also the measurable subsets.

Taking the intersection of any subset x ⊂ 𝑋 with a partition cell c ⊂ 𝑋 gives a subset whose
elements are entirely contained within the partition cell,

x ∩ c ⊂ c.
Moreover intersecting an entire collection of subsets

{x1, … , x𝑗, …} ⊂ 2𝑋

with c gives a collection of subsets that are all contained witin the partition cell,

{x1 ∩ c, … , x𝑗 ∩ c, …} ⊂ 2c.

Importantly if the partition cell itself is an element of that initial collection of subsets then this
restriction respects the subset operations. Formally if 𝒳 ⊂ 2𝑋 is a collection of subsets of 𝑋
that contains c and is closed under complements, countable unions, and countable operations
then the collection of intersections

𝒳c = {x ∩ c for all x ∈ 𝒳} ⊂ 2c

will also be a collection of subsets of c that is closed under complements, countable unions,
and countable operations. In other words if 𝒳 is a 𝜎-algebra over 𝑋 that contains c then 𝒳c
will be a 𝜎-algebra over c. This restricted 𝜎-algebra is known as a subspace 𝜎-algebra.

By construction every measurable subset in a restricted 𝜎-algebra 𝒳c is also a measurable
subset in the ambient 𝜎-algebra 𝒳. Consequently the probabilities defined by a conditional
probability distribution over 𝑋 also define probabilities over c. This allows us to define a new
function

𝜋𝒫
c ∶ 𝒳c → [0, 1]

s ↦ 𝜋(s ∩ c)
𝜋(c)

15



with
𝜋𝒫

c (c) = 𝜋𝒫(c ∣ c) = 1
and

𝜋𝒫
c (∪𝑗s𝑗) = ∑

𝑗
𝜋𝒫

c (s𝑗),

which is exactly a probability distribution over the partition cell c!

All of this is to show that we have two equally valid interpretations of a conditional probability
distribution. Firstly we can interpret a conditional probability distribution as a probability
distribution over the full ambient space 𝑋 which concentrates within a conditioning partition
cell c ∈ 𝒫 (Figure 9a). Alternatively we can interpret a conditional probability distribution
probability distribution over the conditioning partition cell itself (Figure 9b).
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Figure 9: Conditional probability distributions can be interpreted in two equally valid ways. (a)
We can interpret a conditional probability distribution as a probability distribution
over the entire space which concentrates all of its probability into to a single partition
cell. Here 𝜋𝒫

c2
allocates non-zero probability to only the elements of the partition

cell c2 = {■, ♢, ⋈}. (b) Alternatively we can interpret a conditional probability
distribution as a probability distribution defined over a single partition cell. From
this perspective 𝜋𝒫

c2
doesn’t even consider elements outside of c2.

The former interpretation is more common in technical mathematics. As we will see later on
in this chapter and the next, however, the latter interpretation is more in line with how con-
ditional probability distributions work are interpreted and used in more practical applications
of probability theory.
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2.5 Conditional Probability Kernels

We can push our organization one step further and collect all of the conditional probability
distributions for all of the partition cells into a single mathematical object (Figure 10)

𝜋𝒫(⋅ ∣ ⋅) ∶ 𝒳 × 𝒫 → [0, 1]

x, c ↦ 𝜋(x ∩ c)
𝜋(c) .

I will refer to this binary function as a conditional probability kernel.

πP(x1 | c1), . . . , πP(xj | c1), . . .

. . . , . . . , . . . , . . .

πP(x1 | ci), . . . , πP(xj | ci), . . .

. . . , . . . , . . . , . . .

Conditional Probabilities

(a)

πP(· | c1)

. . .

πP(· | ci)

. . .

Conditional Probability Distributions

(b)

πP(· | ·)

Conditional Probability Kernel

(c)

Figure 10: An important part of conditional probability theory is organization. (a) The con-
ditional probabilities defined by 𝜋-non-null partition cells can be organized into
(b) conditional probability distributions that return conditional probabilities when
evaluated. Likewise the collection of conditonal probability distributions defined by
all partition cells can be organized into a conditional probability kernel that returns
conditonal probability distributions when partially evaluated. In order to generalize
conditional probability theory to 𝜋-null partitions we will actually work backwards,
showing first that a conditional probability kernel exists and then deriving condi-
tonal probability distributions from the kernel and conditional probabilities from
those distributions.

Partially evaluating a conditional probability kernel on a measurable subset in its first argu-
ment results in a measurable, unary function from each partition cell to the corresponding
conditional probability,

𝑝x = 𝜋𝒫(x ∣ ⋅) ∶ 𝒫 → [0, 1]

c ↦ 𝜋(x ∩ c)
𝜋(c) .

In words this partial evaluation quantifies how much the unconditional probability allocated
to x contributes to the unconditional probability allocated to each partition cell. I will refer
to this object as a conditional probability function.
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On the other hand partially evaluating a conditional probability kernel on a partition cell in
its second argument gives the corresponding conditional probability distribution,

𝜋𝒫
c = 𝜋𝒫(⋅ ∣ c) ∶ 𝒳 → [0, 1]

x ↦ 𝜋(x ∩ c)
𝜋(c) .

As is so often the case we have to be careful with the terminology here. I have used “conditional
probability distribution” to refer to a particular probability distribution associated with a
particular partition cell, and “conditional probability kernel” to refer to the collection of all
probability distributions defined by all of the cells in a partition.

This convention, however, is by no means universal. Many references use “conditional probabil-
ity distribution” to refer to the collection of probability distributions 𝜋𝒫 instead of a particular
probability distribution 𝜋𝒫

c , and some even use it to refer to both at the same time! Needless
to say this latter overloaded and ambiguous terminology makes it very easy to confuse the two
objects.

Again I will use “conditional probability distribution” and “conditional probability kernel” to
avoid as much ambiguity in this book as possible, but when reading other texts you may want
to be careful to identify to which object an author is referring as any given time. Moreover in
our own writing there is no harm in being redundant in order clarify whether we are referring
to 𝜋𝒫(⋅ ∣ ⋅) or 𝜋𝒫(⋅ ∣ c) in any given application.

2.6 The Law of Total Expectation

One of the benefits of conditional probability kernels is that they allow us to rewrite the law
of total probability,

𝜋(x) = ∑
c∈𝒫

𝜋𝒫(x ∣ c) 𝜋(c)

entirely in terms of expectation values.

If we write conditional probabilities as the outputs of a conditional probability function func-
tion,

𝜋𝒫(x ∣ c) = 𝑝x(c),
then the law of total probability becomes a discrete expectation value,

𝜋(x) = ∑
c∈𝒫

𝜋𝒫(x ∣ c) 𝜋(c)

= ∑
c∈𝒫

𝑝x(c) 𝜋(c)

= 𝔼𝜋𝒫
[𝑝x].
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Here the probability distribution 𝜋𝒫 is defined by the probability allocated to each partition
cell,

𝜋𝒫(c) = 𝜋(c).

At the same time both the initial allocation and conditional probability function can be written
in terms of expectation values of indicator functions,

𝜋(x) = 𝔼𝜋[𝐼x]
and

𝑝x(c) = 𝔼𝜋𝒫
c
[𝐼x],

respectively. Consequently we can write the law of total probability as

𝜋(x) = 𝔼𝜋𝒫
[𝑝x]

𝔼𝜋[𝐼x] = 𝔼𝜋𝒫
[𝑝x]

with
𝑝x(c) = 𝔼𝜋𝒫

c
[𝐼x].

Conveniently this relationship between the various notions of expectation defined by an initial
probability distribution 𝜋 and a measurable partition 𝒫 generalizes to arbitrary expectation
values. The expectation value of any function

𝑔 ∶ (𝑋, 𝒳) → (ℝ, ℬℝ)
can be written as

𝔼𝜋[𝑔] = 𝔼𝜋𝒫
[𝑒𝑔],

where
𝑒𝑔(c) = 𝔼𝜋𝒫

c
[𝑔].

Here the inner expectations 𝑒𝑔 are known as conditional expectation values and the overall
result is known as the law of total expectation or the law of iterated expectation.

With the laws of total probability and total expectation in hand we can decompose not only
probability allocations but also expectation values along an explicit partition. If expectation
values with respect to the initial probability distribution are difficult to compute but the con-
ditional expectation values are more straightforward to work out then this iterative approach
becomes a particularly-productive computational technique.

3 Conditioning On Implicit Partitions

The construction, and notation, of conditional probability distributions becomes particularly
elegant when we implicitly define countable partitions through the level sets of a surjective
function. This also paves the way for generalizing conditional probability theory to uncountable
partitions implicitly defined by functions with an uncountable number of output points.
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3.1 Conditioning On Countable Implicit Partitions

In Section 1 we learned that surjective functions 𝑓 ∶ 𝑋 → 𝑌 implicitly define a partition of the
input space 𝑋 where the partition cells are defined by the non-empty level sets 𝑓−1(𝑦) ⊂ 𝑋.
If 𝑓 is also (𝒳, 𝒴)-measurable and 𝒴 is a Hausdorff 𝜎-algebra then these non-empty level sets
will also be 𝒳 measurable, allowing us to consistently allocate probability to them.

When 𝑌 contains a countable number of elements the partition defined by these level sets will
be countable. Moreover if the probability allocated to each level set is non-zero,

𝜋(𝑓−1(𝑦)) > 0
for all 𝑦 ∈ 𝑌 , then the partition will be 𝜋-non-null. In this case we can directly apply the
conditional probability theory that we introduced in Section 2.

When working with partitions implicitly defined by a surjective function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴)
I will denote the conditional probability kernel as

𝜋𝑓 ∶ 𝒳 × 𝑌 → [0, 1]

x, 𝑦 ↦ 𝜋𝑓(x ∣ 𝑦) = 𝜋(x ∩ 𝑓−1(𝑦))
𝜋(𝑓−1(𝑦)) .

For each x ∈ 𝒳 the partial evaluation

𝑝x = 𝜋𝑓(x ∣ ⋅) ∶ 𝑌 → [0, 1]
defines a 𝒴-measurable conditional probability function, and for each 𝑦 ∈ 𝑌 the partial evalu-
ation

𝜋𝑓
𝑦 = 𝜋𝑓(⋅ ∣ 𝑦) ∶ 𝒳 → [0, 1]

x ↦ 𝜋𝑓(x ∣ 𝑦)
defines a conditional probability distribution that concentrates entirely on the corresponding
level set,

𝜋𝑓
𝑦(𝑓−1(𝑦)) = 𝜋𝑓(𝑓−1(𝑦) ∣ 𝑦)

= 𝜋(𝑓−1(𝑦) ∩ 𝑓−1(𝑦))
𝜋(𝑓−1(𝑦))

= 𝜋(𝑓−1(𝑦))
𝜋(𝑓−1(𝑦))

= 1.

Equivalently we can interpret each 𝜋𝑓
𝑦 as a probability distribution over not the entire ambient

space 𝑋 but rather just the corresponding level set,

𝜋𝑓
𝑦 ∶ 𝒳𝑦 → [0, 1],
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where 𝒳𝑦 denotes the subspace 𝜎-algebra restricted to the level set 𝑓−1(𝑦). Again we have the
flexibility to interpret the conditional probability distributions induced by 𝑓 as a collection of
probability distributions over 𝑋 that concentrate on particular level sets or as a collection of
probability distributions over the particular level sets themselves.

At the same time because we have assumed that 𝑓 is (𝒳, 𝒴)-measurable we can push 𝜋 forward
along 𝑓 to define a marginal probability distribution 𝑓∗𝜋 over the output space. By definition
the pushforward probability allocated to the output atomic subset {𝑦} ∈ 𝒴 is equal to the
input probability allocated to the corresponding level set,

𝑓∗𝜋({𝑦}) = 𝜋(𝑓−1(𝑦)).

This means that a surjective function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴) induces a 𝜋-non null partition if
and only if the pushforward probability allocated to every output atomic subset is non-zero,

𝑓∗𝜋({𝑦}) > 0

for all 𝑦 ∈ 𝑌 .

For the countable and measurable partition implicitly defined by a sufficiently nice surjective
function the law of total probability becomes

𝜋(x) = ∑
𝑦∈𝑌

𝜋𝑓(x ∣ 𝑦) 𝜋(𝑓−1(𝑦))

= ∑
𝑦∈𝑌

𝜋𝑓(x ∣ 𝑦) 𝑓∗𝜋({𝑦}).

This, however, is just a pushforward expectation value,

𝜋(x) = ∑
𝑦∈𝑌

𝜋𝑓(x ∣ 𝑦) 𝑓∗𝜋({𝑦})

= 𝔼𝑓∗𝜋[𝑝x],

where

𝑝x ∶ 𝑌 → [0, 1]

𝑦 ↦ 𝜋𝑓(x ∣ 𝑦) = 𝜋(x ∩ 𝑓−1(𝑦))
𝜋(𝑓−1(𝑦))

is just a conditional probability function.
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Similarly the law of total expectation becomes

𝔼𝜋[𝑔] = ∑
𝑥∈𝑋

𝜋({𝑥}) 𝑔(𝑥)

= ∑
𝑥∈𝑋

[∑
𝑦∈𝑌

𝜋𝑓({𝑥} ∣ 𝑦) 𝑓∗𝜋({𝑦})] 𝑔(𝑥)

= ∑
𝑦∈𝑌

[∑
𝑥∈𝑋

𝜋𝑓({𝑥} ∣ 𝑦) 𝑔(𝑥)] 𝑓∗𝜋({𝑦})

= ∑
𝑦∈𝑌

𝑒𝑔 𝑓∗𝜋({𝑦})

= 𝔼𝑓∗𝜋[𝑒𝑔],

where 𝑒𝑔 is the conditional expectation function

𝑒𝑔 ∶ 𝑌 → [0, 1]
𝑦 ↦ 𝔼𝜋𝑓

𝑦
[𝑔].

Notice that a sufficiently-nice surjective function gives us two ways to manipulate a probability
distribution over the input space: we can not only push it forward to a probability distribution
on the output space but also decompose it into a collection of probability distributions across
the level sets. Moreover the laws of total probability and total expectation show us that these
operations complement each other in the sense that we can always recover any information
about the initial probability distribution by combining the information from the pushforward
and conditional probability distributions.

In other words conditional probability distributions encodes all of the information that we
might lose when pushing a probability distribution forward along a surjective function. The
pushforward probability distribution quantifies how much input probability is allocated to each
level set while each conditional probability distribution quantifies how those allocations are
distributed all across the corresponding level set (Figure 11).

Conditioning on implicit conditions suggests a variety of terminologies. We might, for example,
say that we’re conditioning the initial probability distribution 𝜋 on a surjective function 𝑓 ∶
𝑋 → 𝑌 , the output points 𝑦 ∈ 𝑌 , the level sets defined by that point 𝑓−1(𝑦) ∈ 𝑌 , or even the
subspace 𝜎-algebras within that level set. All of this language, however, is just short-hand for
conditioning on the partition implied by all of these intermediate objects.

3.2 Conditioning On General Implicit Partitions

Up to this point we have been able to define conditional probability distributions for measur-
able, 𝜋-non-null, and countable partitions that are defined either explicitly as a list of subsets
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Figure 11: The partition implicitly defined by a surjective function can also be used to condi-
tion. (a) The level sets (b) decompose an initial probability distribution into (c) a
pushforward probability distribution and (d) a conditional probability kernel. All
of the information in the initial probability distribution is preserved one of these
components. Moreover all probabilistic operations defined by the initial probability
distribution can be computed using the pushforward and conditional probability
distributions with the law of total expectation.
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or implicitly as the level sets of a surjective function. Unfortunately this construction doesn’t
immediately generalize to the continuous spaces that dominate practical applications.

Consider for example a surjective function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴) where both the input space 𝑋
and output space 𝑌 are continuous spaces with an uncountably infinite number of elements.
This function implicitly defines a partition of the input space 𝑋 into an uncountably infinite
number of level sets 𝑓−1(𝑦).
As in the countable case we can decompose any measurable subset x ∈ 𝒳 into its intersections
with these level sets (Figure 12),

x = ⋃
𝑦∈𝑌

(x ∩ 𝑓−1(𝑦)) .

Because there are an uncountably infinite number of intersections, however, we cannot write
𝜋(x) as a sum over the intersection probabilities,

𝜋(x) = 𝜋 ( ⋃
𝑦∈𝑌

(x ∩ 𝑓−1(𝑦))) ≠ ∑
𝑦∈𝑌

𝜋(x ∩ 𝑓−1(𝑦)).

Remember that probability distributions are defined to have countable additivity but not
uncountable additivity! Consequently we cannot define a law of total probability as a sum
over individual output elements.

x ∈ X

X

(a)

x ∩ f−1(y)

X Y

y ∈ Y

(b)

Figure 12: Given an uncountable partition (a) any measurable subset set (b) can be decom-
posed into an uncountable number of level set intersections. Because probability
distributions are required to be only countably additive we cannot distribution
probability allocations through this decomposition.

At the same time many probability distributions that we will encounter in practical applications
of probability theory will allocate zero probability to either some or all of the level sets of the
conditioning function,

𝜋(𝑓−1(𝑦)) = 𝑓∗𝜋({𝑦}) = 0.
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Consequently any attempt to directly define general conditional probabilities by the ratio

𝜋𝑓(x ∣ 𝑦) = 𝜋𝑓
𝑦(x) = 𝜋(x ∩ 𝑓−1(𝑦))

𝜋(𝑓−1(𝑦))
would result with indefinite 0/0 outcomes.

Is there any hope for generalizing conditional probability to uncountable partitions? Fortu-
nately the answer is yes. While we cannot sum over the individual level set probabilities we
can define expectations over them. In particular the key is to generalize the expectation form
of the law of total probability,

𝜋(x) = 𝔼𝑓∗𝜋[𝑝x],
for some appropriate function

𝑝x ∶ 𝑌 → [0, 1]
that we will have to define. Equivalently we can generalize the law of total expectation,

𝔼𝜋[𝑔] = 𝔼𝑓∗𝜋[𝑒𝑔],

for some appropriate function
𝑒𝑔 ∶ 𝑌 → [0, 1].

To formalize this generalization consider a surjective function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴) and a
probability distribution 𝜋 ∶ 𝒳 → [0, 1]. An intricate mathematical analysis (Chang and Pollard
(1997); Leão Jr, Fragoso, and Ruffino (2004)) shows that if 𝜋 is sufficiently well-behaved then,
in addition to the pushforward distribution

𝑓∗𝜋 ∶ 𝒴 → [0, 1],

there always exists a conditional probability kernel

𝜋𝑓(⋅ ∣ ⋅) ∶ 𝒳 × 𝑌 → [0, 1] ⊂ ℝ
x, 𝑦 ↦ 𝜋𝑓(x ∣ 𝑦) ,

that gives a (𝒴, ℬℝ)-measurable conditional probability function for any partial evaluation on
the first argument,

𝜋𝑓(x ∣ ⋅) ∶ 𝑌 → [0, 1],
and a conditional probability distribution for 𝑓∗𝜋-almost every partial evaluation on the second
argument,

𝜋𝑓
𝑦 ∶ 𝒳 → [0, 1]

x ↦ 𝜋𝑓(𝑥 ∣ 𝑦).

In particular the conditional probability distributions concentrate on the corresponding level
set,

𝜋𝑓
𝑦(𝑓−1(𝑦)) = 𝜋𝑓(𝑓−1(𝑦) ∣ 𝑦) = 1,
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just as in the countable case.

Critically these partial evaluations satisfy a generalized law of total probability (Figure 13),

𝜋(x) = 𝔼𝑓∗𝜋[𝑝x]

where 𝑝x(𝑦) is the conditional probability function. Moreover they also satisfy a generalized
law of total expectation,

𝔼𝜋[𝑔] = 𝔼𝑓∗𝜋[𝑒𝑔]
where

𝑒𝑔 ∶ 𝑌 → [0, 1]
𝑦 ↦ 𝔼𝜋𝑓

𝑦
[𝑔]

is a conditional expectation value.

px(y) = πf−1(x | y)

π(x) = Ef∗π[px]

X Y

y ∈ Y

Figure 13: Although we can’t always sum over the probabilities allocated to the intersection
of a measurable subset x ∈ 𝒳 with the level sets of a sufficiently well-behaved func-
tion, we can take a pushforward expectation over the relative level set probabilities,
𝜋(x) = 𝔼𝑓∗𝜋[𝑝x].

In the case where the output space, and hence the number of level sets, is countable these
expectations reduce to discrete summations, and the general laws of total probability and
expectation reduce to our initial laws of total probability and expectation. For example

𝜋(x) = 𝔼𝑓∗𝜋[𝑝x]
= ∑

𝑦∈𝑌
𝑓∗𝜋(𝑦) 𝑝x(𝑦)

= ∑
𝑦∈𝑌

𝜋(𝑓−1({𝑦})) 𝑝𝑓−1(x ∣ 𝑦)

= ∑
𝑦∈𝑌

𝜋(𝑓−1({𝑦})) 𝜋(x ∩ 𝑓−1({𝑦}))
𝜋(𝑓−1({𝑦})) .
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Any conditional probability kernel satisfying these properties is referred to as a disintegra-
tion of the probability distribution 𝜋 with respect to 𝑓 or, far less impressively, a regular
conditional probability distribution, or regular conditional probability kernel. That
said I find names like “regular conditional probability kernel” to be a bit of a mouthful. To
streamline the terminology slightly I will use “conditional probability kernel” to refer to disin-
tegrations generally, and “discrete conditional probability kernel” to refer to the special case
of disintegrations with respect to functions that implicitly define countable partitions.

For countable output spaces a surjective function 𝑓 and probability distribution 𝜋 uniquely
define a disintegration, and hence a discrete conditional probability kernel. More generally
there will be infinitely many disintegrations compatible with a given function and probability
distribution pair. The differences between these compatible disintegrations, however, are al-
ways confined to 𝜋-null subsets and, consequently, they all define equivalent probabilities and
expectation values.

Disintegrations completely generalize the discrete conditional probability kernels that we de-
rived for countable partitions. We can interpret disintegrations as a collection of probability
distributions that concentrate on particular level sets or, equivalently, a collection of proba-
bility distributions defined directly on particular level sets. Moreover disintegrations can be
also be interpreted as complementing the pushforward probability distribution, with the latter
determining how much probability is allocated to each level set and the former determining
how that total allocation unfurls across each level set.

There is one final technical detail that I have purposefully left ambiguous. Earlier I noted
that disintegrations exist not for any probability distribution but rather only sufficiently “well-
behaved” probability distributions. For those interested in exploring these details disinte-
grations can be derived only for a special class of measures known as Radon measures.
Understanding what Radon measures are, and why they are needed to define disintegrations,
goes far beyond the scope of this book. Fortunately every probability distribution we will
encounter will be a Radon probability distribution, indeed non-Radon probability distribu-
tions are extremely weird mathematically, and we can consequently take this condition for
granted.

4 Conditional Probability Density Functions

Conditional probability distributions are relatively straightforward to define abstractly. In
practice, however, we will typically be working with not these probability distributions directly
but rather their probability density function representations in the context of a convenient
reference measure.

Unfortunately rigorously constructing conditional probability density functions is a bit more
complicated. To do so properly we will need all of the measure theory tools that we have
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developed to this point, and a few more that I will introduce below. Buckle up and make sure
that you are aware of for your nearest emergency exit.

4.1 The Utility Of Integral Notation

Before diving into probability density functions let’s take a second to ponder notation.

Recall that partially evaluating a regular conditional probability kernel on any 𝑦 ∈ 𝑌 yields a
conditional probability distribution that concentrates on the level set 𝑓−1(𝑦),

𝜋𝑓
𝑦 ∶ 𝒳 → [0, 1]

x ↦ 𝜋𝑓(x ∣ 𝑦).

When paired with an integrand 𝑔 ∶ 𝑋 → ℝ the collection of all conditional probability distri-
butions then defines a conditional expectation function,

𝑒𝑔 ∶ 𝑌 → ℝ
𝑦 ↦ 𝔼𝜋𝑓

𝑦
[𝑔].

The law of total expectation ensures that the pushforward expectation of this conditional
expectation function is always equal to the expectation value of the probability distribution
that was disintegrated,

𝔼𝜋[𝑔] = 𝔼𝑓∗𝜋[𝑒𝑔] .

Ideally we’d be able to write the law of total expectation more compactly, packing all of
the contributions into a single line. Unfortunately any attempt at more compact notation
is frustrated by the standard notational convention of ignoring arguments when denoting
expectation values.

For example a notation that replaces 𝑦 with a placeholder “⋅”,

𝔼𝜋[𝑔] = 𝔼𝑓∗𝜋[𝑒𝑔] = 𝔼𝑓∗𝜋[𝔼𝜋𝑓⋅
[𝑔]] ,

is not only hard to read but can be ambiguous in applications where there are multiple spaces
on which 𝑓 and 𝑔 might act. At the same time a notation like

𝔼𝜋[𝑔] = 𝔼𝑓∗𝜋[𝑒𝑔] = 𝔼𝑓∗𝜋[𝔼𝜋𝑓
𝑦
[𝑔(𝑥)]]

fails to communicate on what spaces the probability distributions 𝑓∗𝜋 and 𝜋𝑓
𝑦 are defined.

One way around these notational frustrations is to use the integral notation for expectation
values that we first discussed in Chapter 5, Section 2.4 where appropriate variables specify the
spaces on which all of the probability distributions and functions are defined.
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For example if we interpret each conditional probability distribution 𝜋𝑓
𝑦 as being defined over

the entirely of the ambient space 𝑋 then the conditional expectation function can be written
as

𝑒𝑔(𝑦) = 𝔼𝜋𝑓
𝑦
[𝑔]

= ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝑔(𝑥),

with the law of total expectation nesting measure-informed integrals over the entire ambient
space within measure-informed integrals over the output space,

𝔼𝜋[𝑔] = 𝔼𝑓∗𝜋[𝑒𝑔]

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) 𝑒𝑔(𝑦)

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓
𝑦(d𝑥) 𝑔(𝑥)

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝑔(𝑥).

To use the integral notation when we interpret each conditional probability distribution 𝜋𝑓
𝑦 as

being defined over only the corresponding level set 𝑓−1(𝑦) ⊂ 𝑋 we need to be able to specify
variables that take values in that level set. To that end let’s introduce a conditional variable
𝑥𝑦 that takes values in the level set corresponding to the output point 𝑦 ∈ 𝑌 ,

𝑥𝑦 ∈ 𝑓−1(𝑦) ⊂ 𝑋.

Conditional variables allow us to decompose any input variable 𝑥 ∈ 𝑋 into an output variable
and a corresponding conditional variable,

𝑥 = (𝑦, 𝑥𝑦).

Note that the right hand-side isn’t an ordered pair because the possible values of the second
variable will in general depend on the choice of the first variable. For the mathematically-
curious this construction is known as a semi-direct product.

Using conditional variables we can then write the conditional expectation function as

𝑒𝑔(𝑦) = 𝔼𝜋𝑓
𝑦
[𝑔]

= ∫ 𝜋𝑓
𝑦(d𝑥𝑦) 𝑔(𝑦, 𝑥𝑦)

= ∫ 𝜋𝑓(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦).
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The law of total expectation then nests measure-informed integrals over the level sets of 𝑓
within an measure-informed integral over the output space,

𝔼𝜋[𝑔] = 𝔼𝑓∗𝜋[𝑒𝑔]

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) 𝑒𝑔(𝑦)

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦).

Conditional variables are by no means universal and there many other notational conventions
for specifying measure-informed integrals over individual level sets that one might encounter.
Some references, for example, decorate the integral sign with the relevant spaces,

∫
𝑋

𝜋(d𝑥) 𝑔(𝑥) = ∫
𝑌

𝑓∗𝜋(d𝑦) ∫
𝑓−1(𝑦)

𝜋𝑓(d𝑥 ∣ 𝑦) 𝑔(𝑥),

while others use 𝛿 function-like shorthands such as

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝛿(𝑦 − 𝑓(𝑥)) 𝑔(𝑥)

or
∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝛿(𝑓−1(𝑦)) 𝑔(𝑥)

to communicate the domain of integration. In this book, however, I will tend to favor the
conditional variable notation as I find that it offers the best compromise between compactness
and informativeness.

Finally the integral relationships implied by the law of total expectation are often simplified
to relationships between the integrands. For example

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝑔(𝑥)

might be represented by
𝜋(d𝑥) = 𝑓∗𝜋(d𝑦)𝜋𝑓(d𝑥 ∣ 𝑦),

and
∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑥𝑦)

represented by
𝜋(d𝑥) = 𝑓∗𝜋(d𝑦)𝜋𝑓(d𝑥𝑦 ∣ 𝑦).

We always have to be careful, however, to recognize that these simpler integrand equations
are just notational shorthands for the full integral relationships and not misinterpret them
otherwise. For example in general we do not have

𝜋(x) = 𝑓∗𝜋(y)𝜋𝑓(x ∣ 𝑦)
for any combination of input subset x ∈ 𝒳, output subset y ∈ 𝒴, and output point 𝑦 ∈ 𝑌 .
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4.2 Conditional Probability Density Functions For Non-Null Partitions

With our notational tools set let’s make our first step into conditional probability density
functions by considering the simplest case of a countable, non-null partition.

As usual we begin with an initial probability space (𝑋, 𝒳, 𝜋). Next we’ll introduce a surjective
function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴) that maps the initial space into a countable output space such
that each level set is allocated finite probability,

𝜋(𝑓−1(𝑦)) > 0.

Note that we don’t need the output space to be countable for some level sets to be allocated
finite probability, but we do need it to be countable for all level sets to be allocated finite
probability.

With these assumptions the law of total expectation becomes

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝑔(𝑥)

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∑
𝑦∈𝑌

𝑓∗𝜋({𝑦}) ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝑔(𝑥)

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∑
𝑦∈𝑌

𝜋(𝑓−1(𝑦)) ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝑔(𝑥)

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∑
𝑦∈𝑌

∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝜋(𝑓−1(𝑦)) 𝑔(𝑥).

To introduce probability density functions we need a sufficiently well-behaved reference mea-
sure. Let’s assume a 𝜎-finite reference measure 𝜇 that dominates our target probability distri-
bution 𝜋 and allows us to write the left-hand side as

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) 𝑔(𝑥).

In order to write the conditional expectation values on the right-hand side as 𝜇-informed
integrals we need each 𝜋𝑓

𝑦 to also be absolutely continuous with respect to 𝜇. Because each 𝜋𝑓
𝑦

completely concentrates on the corresponding level set 𝑓−1(𝑦) absolutely continuity requires
that 𝜇 allocates finite measure to each level set,

𝜇(𝑓−1(𝑦)) > 0.

Fortunately this is automatically guaranteed by our existing assumptions. If 𝜋 is absolutely
continuous with respect to 𝜇 then 𝜋(x) > 0 only if 𝜇(x) > 0. Consequently if 𝜋(𝑓−1(𝑦)) > 0
then we have to have 𝜇(𝑓−1(𝑦)) > 0 as well.
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With absolutely continuity ensured we can write the right-hand side as

∑
𝑦∈𝑌

∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝜋(𝑓−1(𝑦)) 𝑔(𝑥) = ∑
𝑦∈𝑌

∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝜋(𝑓−1(𝑦)) 𝑔(𝑥).

Putting both sides together we have

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∑
𝑦∈𝑌

∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝜋(𝑓−1(𝑦)) 𝑔(𝑥)

∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) 𝑔(𝑥) = ∑

𝑦∈𝑌
∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝜋(𝑓−1(𝑦)) 𝑔(𝑥),

where d𝜋𝑓
d𝜇 (𝑥 ∣ 𝑦) is a collection of probability density functions over 𝑋 indexed by output

points in 𝑌 .

Unfortunately we still can’t compare the integrands because of the sum over output elements
on the right-hand side. To enable a proper comparison we will need to split the 𝜇-informed
integral on the left-hand side into a sum of 𝜇-informed integrals for each output element 𝑦 ∈ 𝑌 .
One particularly nice way to do this is to take advantage of the fact that, because the level
sets of 𝑓 for a partition of 𝑋, the corresponding indicator functions always sum to one,

1 = ∑
𝑦∈𝑌

𝐼𝑓−1(𝑦)(𝑥)

for any input point 𝑥 ∈ 𝑋.

Inserting a sum over output elements directly into the left-hand side of our current equation
gives

∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) 𝑔(𝑥) = ∫ 𝜇(d𝑥) d𝜋

d𝜇(𝑥) 1 𝑔(𝑥)

= ∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) [∑

𝑦∈𝑌
𝐼𝑓−1(𝑦)(𝑥)] 𝑔(𝑥).

Because measure-informed integrals are countably linear we can then pull the summation
outside of the measure-informed integral to give

∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) 𝑔(𝑥)

= ∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) [∑

𝑦∈𝑌
𝐼𝑓−1(𝑦)(𝑥)] 𝑔(𝑥)

= ∑
𝑦∈𝑌

∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥) 𝑔(𝑥).
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After all of this work we now have

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝑔(𝑥)

∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) 𝑔(𝑥) = ∑

𝑦∈𝑌
∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝜋(𝑓−1(𝑦)) 𝑔(𝑥)

∑
𝑦∈𝑌

∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥) 𝑔(𝑥) = ∑

𝑦∈𝑌
∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝜋(𝑓−1(𝑦)) 𝑔(𝑥).

In order for these summed integrals to be equal for any expectand 𝑔 ∶ (𝑋, 𝒳) → (ℝ, ℬℝ) we
must have

d𝜋
d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥) 𝜇= d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝜋(𝑓−1(𝑦)),

or
d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝜇=
d𝜋
d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥)

𝜋(𝑓−1(𝑦)) .

Intuitively for any 𝑦 ∈ 𝑌 the corresponding conditional probability density function is given
by truncating the initial probability density function d𝜋/d𝜇 to the level set 𝑓−1(𝑦), zeroing
the output for any inputs outside of 𝑓−1(𝑦) and then correcting the normalization. Geometri-
cally conditioning on a function with a countable output space is equivalent to slicing d𝜋/d𝜇
along the level sets boundaries and re-weighting the slices to ensure a proper normalization
(Figure 14).

To double check our construction we can verity that this result is consistent with each con-
ditional probability density function 𝜋𝑓

𝑦 completely concentrating on the corresponding level
set,

𝜋𝑓
𝑦(𝑓−1(𝑦)) = 𝜋𝑓(𝑓−1(𝑦) ∣ 𝑦)

= ∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝐼𝑓−1(𝑦)(𝑥)

= ∫ 𝜇(d𝑥)
d𝜋
d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥)

𝜋(𝑓−1(𝑦)) 𝐼𝑓−1(𝑦)(𝑥)

= 1
𝜋(𝑓−1(𝑦)) ∫ 𝜇(d𝑥) d𝜋

d𝜇(𝑥) (𝐼𝑓−1(𝑦)(𝑥))2

= 1
𝜋(𝑓−1(𝑦)) ∫ 𝜇(d𝑥) d𝜋

d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥)

= 1
𝜋(𝑓−1(𝑦))𝜋(𝑓−1(𝑦))

= 1.
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x1

x2

p(x1, x2)

(a)

x1

x2

p(x1, x2) · If−1(y)(x1, x2)

(b)

x1

x2

p(x1, x2 | y)

(c)

Figure 14: Conditional probability density functions are straightforward to construct for count-
able partitions. (a) A probability density function representing the initial probabil-
ity distribution is first (b) sliced into density functions restricted to each level set.
(c) Once properly normalized these density functions become conditional probability
density functions that represent each conditional probability distribution.

34



Equivalently for any measurable subset x ∈ 𝒳 that is disjoint with a particular level set
x ∩ 𝑓−1(𝑦) = ∅ we have

𝜋𝑓
𝑦(x) = 𝜋𝑓(x ∣ 𝑦)

= ∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝐼x(𝑥)

= ∫ 𝜇(d𝑥)
d𝜋
d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥)

𝜋(𝑓−1(𝑦)) 𝐼x(𝑥)

= 1
𝜋(𝑓−1(𝑦)) ∫ 𝜇(d𝑥) d𝜋

d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥) 𝐼x(𝑥)

= 1
𝜋(𝑓−1(𝑦)) ∫ 𝜇(d𝑥) d𝜋

d𝜇(𝑥) 𝐼x∩𝑓−1(𝑦)(𝑥)

= 1
𝜋(𝑓−1(𝑦)) ∫ 𝜇(d𝑥) d𝜋

d𝜇(𝑥) 𝐼∅(𝑥)

= 1
𝜋(𝑓−1(𝑦)) ⋅ 0

= 0.

4.3 The Problem With Null Partitions

Unfortunately this construction doesn’t carry over to functions with more general output
spaces that might contain an uncountably-infinite number of points. In this case at least some,
if not all, of the level sets will be allocated vanishing probabilities,

𝜋(𝑓−1(𝑦)) = 0.

At the same time 𝜎-finite reference measures will allocate vanishing measure to at least some,
if not all, of the level sets,

𝜇(𝑓−1(𝑦)) = 0.

These behaviors immediately obstruct many steps in our construction of a discrete conditional
probability density function. For example when 𝜋(𝑓−1(𝑦)) = 0 the final definition of a discrete
conditional probability density function

d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝜇=
d𝜋
d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥)

𝜋(𝑓−1(𝑦))

requires an ill-defined division by zero.

Problems, however, actually arise much earlier in the calculation. On the right-hand side of
the law of total expectation we cannot convert the output expectation value over 𝑓∗𝜋 into a
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sum over individual output elements if 𝑌 is uncountable. Similarly when 𝑌 is uncountable we
cannot apply the countable linearity of measure-informed integration to the constant function

1 = ∑
𝑦∈𝑌

𝐼𝑓−1(𝑦)(𝑥).

The most fundamental of our problems is that when 𝜇(𝑓−1(𝑦)) = 0 any probability distribution
that is absolutely continuous with respect to 𝜇 must also allocate zero probability to 𝑓−1(𝑦).
The conditional probability distributions 𝜋𝑓

𝑦 , however, allocate not just a non-zero probability
to the level set 𝑓−1(𝑦) but in fact all of their probability! In other words the conditional
probability distributions are typically not absolutely continuous with respect to 𝜇, preventing
us from converting conditional expectation values into 𝜇-informed integrals weighted by a
conditional probability density function in the first place. Absolute continuity is easy to
disregard as unnecessarily abstract, but it has important practical consequences like this!

Yet another way to see why we need a more general construction of conditional probability
theory is to assume that a probability density function of a particular 𝜋𝑓

𝑦 with respect to 𝜇
does exist and show that a mathematical inconsistency arises. For example in order to ensure
that

𝜋𝑓
𝑦(𝑓−1(𝑦)) = 𝜋𝑓(𝑓−1(𝑦) ∣ 𝑦) = 1

we would need a conditional probability density function to satisfy

1 = 𝜋𝑓(𝑓−1(𝑦) ∣ 𝑦)

= ∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝐼𝑓−1(𝑦)(𝑥)

= ∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝐼𝑓−1(𝑦)(𝑥).

If, however, 𝜇(𝑓−1(𝑦)) = 0 then the indicator function will be non-zero for only a 𝜇-null subset
of inputs. Consequently in terms of 𝜇-informed integrals it should be equivalent to the zero
function,

𝐼𝑓−1(𝑦)(𝑥) 𝜇= 0.
This would require that

∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝐼𝑓−1(𝑦)(𝑥) = ∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) ⋅ 0

= 0.

Unfortunately

1 = ∫ 𝜇(d𝑥) d𝜋𝑓

d𝜇 (𝑥 ∣ 𝑦) 𝐼𝑓−1(𝑦)(𝑥) = 0

is a pretty immediate mathematical contradiction.
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Notice the similarity of this inconsistent behavior with the awkward behavior we encountered
when exploring the Dirac delta function in Chapter 6, Section 5.1. Intuitively when 𝑓−1(𝑦)
is a 𝜇-null subset the corresponding conditional probability distribution 𝜋𝑓

𝑦 becomes singular,
and probability density functions become ill-defined without opening our hearts and minds to
generalized functions like the Dirac delta function.

One way to avoid this singular behavior is to embrace the interpretation of each conditional
probability distribution 𝜋𝑓

𝑦 being defined over not all of the ambient space 𝑋 but rather just
the corresponding level set 𝑓−1(𝑦). From this perspective we can define conditional proba-
bility density functions with respect to 𝜎-finite reference measures defined on the level sets
themselves,

∫ 𝜋𝑓(d𝑥 ∣ 𝑦) 𝑔(𝑥) = ∫ 𝜈𝑦(d𝑥) d𝜋𝑓

d𝜈𝑦
(𝑥 ∣ 𝑦) 𝑔(𝑥).

Incorporating these probability functions into the law of total expectation, however, requires
an explicit relationship between these level set reference measures 𝜈𝑦 to the ambient reference
measure 𝜇. This, in turn, requires extending the disintegration of probability measures to the
disintegration of more general measures.

4.4 Disintegrating Measures

In Section 3.2 we introduced disintegrations of probability distributions. This definition pretty
immediately generalizes to finite measures, which for mathematical purposes are equivalent to
probability distributions, but it becomes problematic when working with non-finite measures.
Even 𝜎-finite measures require some extra care to decompose across null subsets.

The core mathematical issue is that a consistent disintegration of a measure 𝜇 with respect
to a function 𝑓 ∶ 𝑋 → 𝑌 requires not only that the initial measure 𝜇 is 𝜎-finite but also that
its pushforward 𝑓∗𝜇 is 𝜎-finite. Unfortunately this latter condition fails for many convenient
reference measures.

Consider, for example, a rigid two-dimensional real space ℝ2 equipped with the two-
dimensional Lebesgue measure 𝜆2 and a projection function

𝜛1 ∶ ℝ2 → ℝ
(𝑥1, 𝑥2) ↦ 𝑥1.

The Lebesgue measure 𝜆2 is 𝜎-finite, allocating finite measure to every measurable subset that
can be encapsulated in a finite rectangle. Formally if

x ⊂ [0, 1] × [0, 1]
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then

𝜆2(x) < 𝜆2([0, 1] × [0, 1])
< 𝑙([0, 1]) ⋅ 𝑙([0, 1])
< 1 ⋅ 1
< 1.

Pushing 𝜆2 forward along 𝜛1, however, results in a measure that allocates infinite measure to
finite intervals (Figure 15),

(𝜛1)∗𝜆2([0, 1]) = 𝜆2(𝜛∗
1[0, 1])

= 𝜆2([0, 1] × (−∞, ∞))
= 𝑙([0, 1]) ⋅ 𝑙((−∞, ∞))
= 1 ⋅ ∞
= ∞.

Consequently (𝜛1)∗𝜆2 cannot be 𝜎-finite.

x2

x1

($1)
∗([a, b])

= [a, b]× (−∞,+∞)

[a, b]

Figure 15: On ℝ2 the projection function 𝜙1 ∶ (𝑥1, 𝑥2) ↦ 𝑥1 pulls back finite intervals [𝑎, 𝑏] into
infinite rectangles [𝑎, 𝑏] × (−∞, +∞). Consequently the two dimensional Lebesgue
measure 𝜆2 projects infinite measure onto finite intervals and the pushforward mea-
sure (𝜙1)∗𝜆2 cannot be 𝜎-finite. In particular 𝜆2 does not pushforward to a Lebesgue
measure!

Fortunately disintigrations can be generalized to work with not only the pushforward of the
target measure but also any convenient 𝜎-finite measure on the output space. Mathematically
if we have

1. an input measurable space (𝑋, 𝒳),
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2. a 𝜎-finite Radon measure 𝜇 ∶ 𝒳 → [0, ∞],
3. an output Hausdorff measurable space (𝑌 , 𝒴).
4. a surjective measurable function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴),
5. and finally a 𝜎-finite measure 𝜈 ∶ 𝒴 → [0, ∞]

then there exists at least one conditional measure kernel

𝜇𝑓,𝜈 ∶ 𝒳 × 𝑌 → [0, ∞]
x, 𝑦 ↦ 𝜇𝑓(x ∣ 𝑦)

that defines a (𝒴, ℬℝ)-measurable function when partially evaluated on the first argument,

𝜇𝑓,𝜈
x ∶ 𝑌 → [0, ∞]

𝑦 ↦ 𝜇𝑓,𝜈(x ∣ 𝑦)

for all x ∈ 𝒳, and a 𝜎-finite measure when partially evaluated on the second argument,

𝜇𝑓
𝑦,𝜈 ∶ 𝒳 → [0, ∞]

x ↦ 𝜇𝑓,𝜈(x ∣ 𝑦)

for 𝜈-almost all 𝑦 ∈ 𝑌 . A more technical discussion can be found in Chang and Pollard
(1997).

The conditional measures derived from a conditional measure kernel behave very similarly to
conditional probability distributions. For example they each concentrate on a particular level
set,

𝜇𝑓,𝜈
𝑦 (𝑓−1(𝑥)) 𝜈= 1

with
𝜇𝑓,𝜈

𝑦 (x) 𝜈= 0
for any x ∈ 𝒳 with x ∩ 𝑓−1(𝑦) = ∅. They also satsify a law of total integration,

∫ 𝜇(d𝑥) 𝑔(𝑥) = ∫ 𝜈(d𝑦) ∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑥),

for any well-behaved integrand 𝑔 ∶ 𝑋 → ℝ.

In circumstances where 𝑓∗𝜇 happens to be 𝜎-finite we can always take 𝜈 = 𝑓∗𝜇 so that the law
of total integration mirrors the law of total expectation. This is always possible if 𝜇 is a finite
measure, and hence always possible when disintegrating probability distributions, but it is not
always viable when 𝜇 is only 𝜎-finite. In particular we have to be vigilent when attempting to
disintegrate the Lebesgue and counting measures that we often turn to for convenient reference
measures as they often pushforward to measures that are not 𝜎-finite.
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4.5 Conditional Probability Density Functions For General Implicit Partitions

Armed with a technique for disintegrating 𝜎-finite measures we are now finally equipped with
enough tools to construct conditional probability density functions for any conditional proba-
bility distribution and sufficiently well-behaved reference measure.

Recall that to construct a conditional probability distribution we need

1. an input measurable space (𝑋, 𝒳),
2. a Radon probability distribution 𝜋 ∶ 𝒳 → [0, 1],
3. an output Hausdorff measurable space (𝑌 , 𝒴).
4. and a surjective measurable function 𝑓 ∶ (𝑋, 𝒳) → (𝑌 , 𝒴).

In order to construct conditional probability density functions we will also need convenient
𝜎-finite Radon reference measures for

5. the input space, 𝜇 ∶ 𝒳 → [0, ∞],
6. the output space, 𝜈 ∶ 𝒴 → [0, ∞],
7. and each level set, 𝜂𝑦 ∶ ℱ𝑦 → [0, ∞].

As we have previously discussed we can safely take measurable functions, Hausdorff 𝜎-algebras,
and Radon measures for granted in practice. We will, however, have to be careful about the
surjectivity of 𝑓 and the 𝜎-finiteness of the reference measures.

If 𝜋 ≪ 𝜇 then we can construct the probability density function

d𝜋
d𝜇 ∶ 𝑋 → ℝ+,

and if 𝑓∗𝜋 ≪ 𝜈 then we can construct the pushforward probability density function

d𝑓∗𝜋
d𝜈 ∶ 𝑌 → ℝ+.

Upon disintegrating 𝜇 we can also construct the conditional probability density functions
relative to the conditional measures,

d𝜋𝑓

d𝜇𝑓,𝜈 ∶ 𝑋 × 𝑌 → ℝ+.

Finally if 𝜇𝑓,𝜈
𝑦 ≪ 𝜂𝑦 then we can convert these conditional probability density functions into

conditional probability density functions relative to our level set reference measures,

d𝜋𝑓

d𝜂𝑦
(𝑥 ∣ 𝑦)

𝜂𝑦= d𝜋𝑓

d𝜇𝑓,𝜈 (𝑥 ∣ 𝑦) ⋅ d𝜇𝑓,𝜈

d𝜂𝑦
(𝑥 ∣ 𝑦).
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In many applications the conditional measures 𝜇𝑓,𝜈
𝑦 will be convenient reference measures and

we will not need to consider an auxiliarycollection of reference measures 𝜂𝑦. That said here I
will consider the more general scenario for completeness.

All that we’re missing is a mathematical relationship that ties this menagerie of probability
density functions together. That information is hidden within the law of total expectation,

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦)

𝐿 = 𝑅.

All we need to do is convert both sides of this equation into the same kind of measure-informed
integral.

Let’s start with the left-hand side,

𝐿 = ∫ 𝜋(d𝑥) 𝑔(𝑥)

= ∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) 𝑔(𝑥).

If we disintegrate 𝜇 with respect to 𝑓 and 𝜈 this becomes

𝐿 = ∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) 𝑔(𝑥)

= ∫ 𝜈(d𝑦) ∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) d𝜋
d𝜇(𝑦, 𝑥𝑦) 𝑔(𝑦, 𝑥𝑦).

Incorporating the level set reference measures then gives

𝐿 = ∫ 𝜈(d𝑦) ∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) d𝜋
d𝜇(𝑦, 𝑥𝑦) 𝑔(𝑦, 𝑥𝑦)

= ∫ 𝜈(d𝑦) ∫ 𝜂𝑦(d𝑥𝑦) d𝜇𝑓,𝜈

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦) d𝜋

d𝜇(𝑦, 𝑥𝑦) 𝑔(𝑦, 𝑥𝑦)

= ∫ 𝜈(d𝑦) ∫ 𝜂𝑦(d𝑥𝑦) [d𝜇𝑓,𝜈

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦) d𝜋

d𝜇(𝑦, 𝑥𝑦)] 𝑔(𝑦, 𝑥𝑦).

Over on the right-hand side we have

𝑅 = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦)

= ∫ 𝜈(d𝑦) d𝑓∗𝜋
d𝜈 (𝑦) ∫ 𝜋𝑓(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦)

= ∫ 𝜈(d𝑦) d𝑓∗𝜋
d𝜈 (𝑦) ∫ 𝜂𝑦(d𝑥𝑦) d𝜋𝑓

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦).
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Because the domain of the inner measure-informed integral is single level set the pushforward
probability density function d𝑓∗𝜋/d𝜈 is a constant that can be pulled inside,

𝑅 = ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦)

= ∫ 𝜈(d𝑦) d𝑓∗𝜋
d𝜈 (𝑦) ∫ 𝜂𝑦(d𝑥𝑦) d𝜋𝑓

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦)

= ∫ 𝜈(d𝑦) ∫ 𝜂𝑦(d𝑥) d𝑓∗𝜋
d𝜈 (𝑦) d𝜋𝑓

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦)

= ∫ 𝜈(d𝑦) ∫ 𝜂𝑦(d𝑥) [d𝑓∗𝜋
d𝜈 (𝑦) d𝜋𝑓

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦)] 𝑔(𝑦, 𝑥𝑦).

We can now put these two pieces back together,

𝐿 = 𝑅

∫ 𝜋(d𝑥) 𝑔(𝑥)

= ∫ 𝑓∗𝜋(d𝑦) ∫ 𝜋𝑓(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦)

∫ 𝜈(d𝑦) ∫ 𝜂𝑦(d𝑥𝑦) [d𝜇𝑓,𝜈

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦) d𝜋

d𝜇(𝑦, 𝑥𝑦)] 𝑔(𝑦, 𝑥𝑦)

= ∫ 𝜈(d𝑦) ∫ 𝜂𝑦(d𝑥𝑦) [d𝑓∗𝜋
d𝜈 (𝑦) d𝜋𝑓

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦)] 𝑔(𝑦, 𝑥𝑦).

Because both sides of the equation are the same kind of measure-informed integral we have
equality if and only if the integrands on both sides are equal up to null subsets. In particular
we have equality for all integrands 𝑔 ∶ 𝑋 → ℝ if and only if

d𝜇𝑓,𝜈

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦) d𝜋

d𝜇(𝑦, 𝑥𝑦)
𝜈,𝜂𝑦= d𝑓∗𝜋

d𝜈 (𝑦) d𝜋𝑓

d𝜂𝑦
(𝑥𝑦 ∣ 𝑦).

Isolating the ambient probability density function gives

d𝜋
d𝜇(𝑦, 𝑥𝑦)

𝜂𝑦= d𝑓∗𝜋
d𝜈 (𝑦)

d𝜋𝑓
d𝜂𝑦

(𝑥𝑦 ∣ 𝑦)
d𝜇𝑓,𝜈
d𝜂𝑦

(𝑥𝑦 ∣ 𝑦)
d𝜋
d𝜇(𝑦, 𝑥𝑦) 𝜇= d𝑓∗𝜋

d𝜈 (𝑦) d𝜋𝑓

d𝜇𝑓,𝜈 (𝑥𝑦 ∣ 𝑦),

or, in terms of unconditional variables,

d𝜋
d𝜇(𝑥) 𝜇= d𝑓∗𝜋

d𝜈 (𝑓(𝑥)) d𝜋𝑓

d𝜇𝑓,𝜈 (𝑥 ∣ 𝑓(𝑥)).
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This relationship is known as the product rule for probability density functions. The product
rule allows to construct the ambient probability density function, the conditional probability
density function, or the pushforward probability density function given the other two. For
example if we know the ambient probability density function and the pushforward probability
density function then the conditional probability density function is given by

d𝜋𝑓

d𝜇𝑓,𝜈 (𝑥𝑦 ∣ 𝑦) 𝜇=
d𝜋
d𝜇(𝑦, 𝑥𝑦)

d𝑓∗𝜋
d𝜈 (𝑦)

.

In words we can conditional a probability density function d𝜋/d𝜇 to a particular output point
𝑦 ∈ 𝑌 in two steps. First we restrict the inputs of d𝜋/d𝜇 to the points in the level set 𝑓−1(𝑦)
(Figure 16b}). Then we divide by the outputs of d𝜋/d𝜇 by the pushforward probability density
function evaluated at 𝑦, d𝑓∗𝜋

d𝜈 (𝑦) (Figure 16c).

Notice, however, that this last step doesn’t change the shape of the conditional probability
density function, just its height. In applications where we don’t need to worry about the nor-
malization we ignore this last step, and any difficulty in evaluating the pushforward probability
density function, entirely.

To demonstrate this process consider a function 𝑓 ∶ 𝑋 → ℕ that maps input points to output
integers and induces a countable partition. Because the output space is discrete the counting
measure is a natural output reference measure, 𝜈 = 𝜒. Moreover if 𝑓∗𝜇({𝑦}) > 0 for all 𝑦 ∈ ℕ
then each 𝜇𝑓,𝜒

𝑦 becomes 𝜇 truncated to a particular level set,

𝜇𝑓,𝜒
𝑦 = 𝜂𝑦 = 𝐼𝑓−1(𝑦) ⋅ 𝜇.

In this case the product rule gives

d𝜋𝑓

d𝜇𝑓,𝜒 (𝑥𝑦 ∣ 𝑦) 𝜇=
d𝜋
d𝜇(𝑦, 𝑥𝑦)

d𝑓∗𝜋
d𝜒 (𝑦)

𝜇=
d𝜋
d𝜇(𝑦, 𝑥𝑦)
𝑓∗𝜋({𝑦})

𝜇=
d𝜋
d𝜇(𝑦, 𝑥𝑦)

𝜋(𝑓−1(𝑦)) .

For a given 𝑦 ∈ 𝑌 we can extend these conditional density functions to all inputs 𝑥 ∈ 𝑋 by
returning zero outside of the corresponding level set,

d𝜋𝑓

d𝜇𝑓,𝜒 (𝑥 ∣ 𝑦) 𝜇= {
d𝜋
d𝜇 (𝑥)

𝜋(𝑓−1(𝑦)) , 𝑥 ∈ 𝑓−1(𝑦)
0, 𝑥 ∉ 𝑓−1(𝑦)

,

or more compactly,
d𝜋𝑓

d𝜇𝑓,𝜒 (𝑥 ∣ 𝑦) 𝜇=
d𝜋
d𝜇(𝑥) 𝐼𝑓−1(𝑦)(𝑥)

𝜋(𝑓−1(𝑦)) .

This is encouragingly consistent with the result that we derived in Section 4.2.
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x1

x2

p(x1, x2)

(a)

x1

x2

p(x1, x2) · If−1(y)(x1, x2)

(b)

x1

x2

p(x1, x2 | y)

(c)

Figure 16: The product rule allows us to generalize the construction of conditional probability
density functions that we first encountered in Section 4.2. (a) An initial probability
density function is first (b) sliced into a collection of density functions by restricted
inputs with non-zero outputs to particular level set. (c) Dividing by the corre-
sponding pushforward probability density then normalizes these density functions
into proper conditional probability density functions.
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4.6 Explicit Formula For Pushforward Probability Density Functions

The ability to disintegrate reference measures also gives us a way to derive an explicit formula
for pushforward probability density functions.

Here we need to start with the definition of pullback expectation values: for sufficiently-
measurable functions 𝑓 ∶ 𝑋 → 𝑌 and ℎ ∶ 𝑌 → ℝ we have

𝔼𝜋[ℎ ∘ 𝑓] = 𝔼𝑓∗𝜋[ℎ]

𝕀𝜇[d𝜋
d𝜇 ℎ ∘ 𝑓] = 𝕀𝜈[d𝑓∗𝜋

d𝜈 ℎ]

or, equivalently,

∫ 𝜋(d𝑥) ℎ(𝑓(𝑥)) = ∫ 𝑓∗𝜋(d𝑦) ℎ(𝑦)

∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) ℎ(𝑓(𝑥)) = ∫ 𝜈(d𝑦) d𝑓∗𝜋

d𝜈 (𝑦) ℎ(𝑦).

Disintegrating 𝜇 with respect to 𝑓 and 𝜈 allows us to write the left-hand side as

∫ 𝜋(d𝑥) ℎ(𝑓(𝑥)) = ∫ 𝜇(d𝑥) d𝜋
d𝜇(𝑥) ℎ(𝑓(𝑥))

= ∫ 𝜈(d𝑦) ∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) d𝜋
d𝜇(𝑦, 𝑥𝑦) ℎ(𝑦).

Because the function ℎ ∘ 𝑓 ∶ 𝑋 → ℝ yields the same output for any 𝑥 ∈ 𝑓−1(𝑦) it is a constant
with respect to the inner integral that can be factored out of the inner measure-informed
integral,

∫ 𝜋(d𝑥) ℎ(𝑓(𝑥)) = ∫ 𝜈(d𝑦) ∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) d𝜋
d𝜇(𝑦, 𝑥𝑦) ℎ(𝑦)

= ∫ 𝜈(d𝑦) [∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) d𝜋
d𝜇(𝑦, 𝑥𝑦)] ℎ(𝑦).

Consequently

∫ 𝜋(d𝑥) ℎ(𝑓(𝑥)) = ∫ 𝑓∗𝜋(d𝑦) ℎ(𝑦)

∫ 𝜈(d𝑦) [∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) d𝜋
d𝜇(𝑦, 𝑥𝑦)] ℎ(𝑦) = ∫ 𝜈(d𝑦) [d𝑓∗𝜋

d𝜈 (𝑦)] ℎ(𝑦).

Because both sides of this equation are 𝜈-informed integrals we have equality if and only if
the integrands are equal up to 𝜈-null subsets. In particular we have equality for any integrand
ℎ ∶ 𝑌 → ℝ if and only if

d𝑓∗𝜋
d𝜈 (𝑦) 𝜈= ∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) d𝜋

d𝜇(𝑦, 𝑥𝑦).
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In theory this gives us an explicit formula for deriving pushforward probability density func-
tions. Implementing this result in practice, however, will not be straightforward unless we
happen to have an explicit method for integrating the initial probability density function over
each level set of 𝑓 .

For example consider the two-dimensional space 𝑋 = ℝ+ × ℝ+ equipped with a Lebesgue
probability density function 𝑝(𝑥1, 𝑥2) and the radial function

𝑓 ∶ 𝑋 → ℝ+

(𝑥1, 𝑥2) ↦ 𝑟 = √𝑥2
1 + 𝑥2

2.

The level sets of 𝑓 define angular arcs of constant radius. Conveniently these arcs are pa-
rameterized by a single variable if we transform to polar coordinates ℝ+ × [0, 𝜋

2 ], with the
map

𝑟 = √𝑥2
1 + 𝑥2

2

𝜃 = arctan (𝑥2
𝑥1

) ,

or equivalently

𝑥1 = 𝑟 cos 𝜃
𝑥2 = 𝑟 sin 𝜃.

In particular integrating over the variable 𝜃 implicitly for a particular 𝑟 integrate over one of
the angular level sets.

To take advantage of this in practice we need to first transform the initial probability density
function 𝑝(𝑥1, 𝑥2) into the probability density function 𝑝(𝑟, 𝜃) using the Jacobian correction
that we encountered in Chapter 7, Section 4.3.1. After this transformation we integrate over
𝜃 to derive a pushforward probability density function over the radial coordinate,

𝑝(𝑟) = ∫
𝜋
2

0
d𝜃 𝑝(𝑟, 𝜃).

Finally we can use the product rule to construct the conditional probability density function
over the angular level sets

𝑝(𝜃𝑟 ∣ 𝑟) = 𝑝(𝑟, 𝜃𝑟)
𝑝(𝑟) .

Implementing all of these calculations, however, is much easier said than done. For those with
a taste for tricky integrals I work through an explicit example that requires some complicated
mathematical functions in the Appendix.
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p(x1, x2)
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r

(b)
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Figure 17: When we have the computational tools to integrate over level sets we can evaluate
pushforward probability density functions, and hence conditional probability den-
sity functions. Here we integrate (a) an initial density function (b) over circular arcs
to derive a pushforward probabilitiy density function over radii. (c) Restricting the
initial probabilty density function to angular level sets and then dividing by push-
forward probability densities then gives conditional probability density functions
over each angular level set.
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5 Conditional Building Blocks

To this point we have discussed conditional probability theory as a tool for breaking probability
distributions down into simpler pieces. Conditional probability theory, however, can also be
used to build probability distributions up from simpler pieces. Throughout I will continue
to take the somewhat-obscure technical requirements of Radon measures and Hausdorff 𝜎-
algebras for granted.

Given a probability distribution 𝜋 defined over the space 𝑋 and a measurable function 𝑓 ∶
𝑋 → 𝑌 we can construct both a pushforward probability distribution 𝑓∗𝜋 and a conditional
probability kernel 𝜋𝑓 . Through the laws of total probability and total expectation these two
byproducts allow us to reconstruct the output of any probabilistic operation on 𝜋.

This construction also works the other way around. Given a measurable function 𝑓 ∶ 𝑋 → 𝑌
any probability distribution over the output space 𝜌 and conditional probability kernel

𝜏 ∶ 𝒳 × 𝑌 → [0, 1]
x, 𝑦 ↦ 𝜏(x ∣ 𝑦),

with
𝜏(𝑓−1(𝑦) ∣ 𝑦) = 1

uniquely define a probability distribution 𝜋 over 𝑋 through the law of total probability,

𝜋(x) = 𝔼𝜌[𝑡x]

where

𝑡x ∶ 𝑌 → [0, 1]
𝑦 ↦ 𝜏(x ∣ 𝑦).

In this case we say that 𝜏 lifts 𝜌 into a probability distribution over 𝑋.

Lifting allows us to construct probability distributions over 𝑋 sequentially, first specifying a
probability distribution over a 𝑌 and then filling in the missing information with conditional
probability distributions across the level sets of a function 𝑓 ∶ 𝑋 → 𝑌 . If 𝑌 is a much simpler
space than 𝑋, for example a lower-dimensional space with fewer degrees of freedom to consider,
and the level sets of 𝑓 are straightforward to interpret, then this sequential procedure can be
much easier to implement in practice than trying to define a probability distribution directly
on 𝑋.

Given a sequence of 𝑁 + 1 spaces,

{𝑋0, … , 𝑋𝑛, … , 𝑋𝑁},
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and functions relating them,

𝑓1 ∶ 𝑋0 → 𝑋1
…

𝑓𝑛 ∶ 𝑋𝑛−1 → 𝑋𝑛
…

𝑓𝑁 ∶ 𝑋𝑁−1 → 𝑋𝑁 ,

we can even iterate this procedure, building up a probability distribution over 𝑋0 from an
initial probability distribution over 𝑋𝑁 and a sequence of conditional probability kernels

{𝜏𝑁 , … , 𝜏𝑛, … , 𝜏1}.

This allows us to incrementally build up sophisticated probability distributions over 𝑋0 from
much simpler pieces. Iteratively constructing probability distributions is particularly useful
on product spaces, which will be the topic of Chapter 9.

We can also define a lifted probability distribution through its expectation values with the law
of total expectation,

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝜌(d𝑦) ∫ 𝜏(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑥).

The advantage of this latter approach is that it allows us to implicitly define 𝜋 through a
sequence of probability density functions.

Given an output reference measure 𝜈 any sufficiently well-behaved function

𝑟 ∶ 𝑌 → ℝ+

with 𝕀𝜈[𝑟] = 1 defines an output probability distribution 𝜌 = 𝑟 𝜈 through the expectation
values

∫ 𝜌(d𝑦)ℎ(𝑦) = ∫ 𝜈(d𝑦) 𝑟(𝑦) ℎ(𝑦).

Similarly given an input reference measure 𝜇 and its disintegration 𝜇𝑓,𝜈 any sufficiently well-
behaved binary function

𝑡 ∶ 𝑋 × 𝑌 → ℝ+

with
𝕀𝜇𝑓,𝜈

𝑦
[𝑡] 𝜈= 1

defines a conditional probability kernel 𝜏 = 𝑡 𝜇𝑓,𝜈 through the conditional expectation values

∫ 𝜏(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦) = ∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) 𝜏(𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦).

Finally the product of these two functions

𝑝(𝑥) = 𝑝(𝑦, 𝑥𝑦) = 𝑡(𝑥𝑦 ∣ 𝑦) 𝑟(𝑦)
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will always satisfy
𝕀𝜇[𝑝] = 1

and hence define an input probability distribution 𝜋 = 𝑝 𝜇 through the expectation values

∫ 𝜋(d𝑥) 𝑔(𝑥) = ∫ 𝜌(d𝑦) ∫ 𝜏(d𝑥𝑦 ∣ 𝑦) 𝑔(𝑥)

= ∫ 𝜈(d𝑥) 𝑟(𝑦) ∫ 𝜇𝑓,𝜈(d𝑥𝑦 ∣ 𝑦) 𝑡(𝑥𝑦 ∣ 𝑦) 𝑔(𝑦, 𝑥𝑦).

Iterating this construction over a sequence of spaces

{𝑋0, … , 𝑋𝑛, … , 𝑋𝑁},

requires a sequence of functions,
𝑓𝑛 ∶ 𝑋𝑛−1 → 𝑋𝑛,

an probability density function over the terminal space,

𝑝𝑁 ∶ 𝑋𝑁 → ℝ+,

and a sequence of conditional probability density functions,

𝑡𝑛 ∶ 𝑋𝑛−1 × 𝑋𝑛 → ℝ+.

Applying the product rule once gives a probability density function over 𝑋𝑁−1,

𝑝𝑁−1(𝑥𝑁 , (𝑥𝑁−1)𝑥𝑁
) = 𝑡𝑁((𝑥𝑁−1)𝑥𝑁

∣ 𝑥𝑁) 𝑝𝑁(𝑥𝑁).

Repeating the product rule 𝑁 − 1 more times then gives a probability density function over
𝑋0.

The conditional variable notation becomes a bit cumbersome here, so I’ll write this product
as

𝑝0(𝑥0) = 𝑡1(𝑥0 ∣ 𝑥1) ⋯ 𝑡𝑛(𝑥𝑛−1 ∣ 𝑥𝑛) ⋯ 𝑡𝑁(𝑥𝑁−1 ∣ 𝑥𝑁) 𝑝𝑁(𝑥𝑁)

= [
𝑁

∏
𝑛=1

𝑡𝑛(𝑥𝑛−1 ∣ 𝑥𝑛)] 𝑝𝑁(𝑥𝑁)

along with the recursive constraints

𝑥𝑛 = 𝑓𝑛(𝑥𝑛−1)

that completely fix the variables {𝑥1, … , 𝑥𝑁} given a point 𝑥0.

In Chapter 9 we’ll introduce a more elegant notation that works well in the special case of
product spaces.
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6 Independence

In general a probability distribution will induce different behavior on different level sets of
the conditioning function. The exceptional cases, where the conditional behavior is the same
for almost all level sets, arises often enough in practical applications to be worthy of its own
terminology.

To start let’s investigate what happens when conditioning not on a single subset. In particular
consider two measurable subsets x1 ∈ 𝒳 and x2 ∈ 𝒳 that have non-zero overlap with each
other,

x1 ∩ x2 = ∅,
and are both allocated non-zero probability,

𝜋(x1) > 0, 𝜋(x2) > 0.

The conditional probability of the first subset given the second is, by definition,

𝜋(x1 ∣ x2) = 𝜋(x1 ∩ x2)
𝜋(x2)

In order for the conditioning to have no affect on how probability is allocated to x1 we need

𝜋(x1) = 𝜋(x1 ∣ x2)

𝜋(x1) = 𝜋(x1 ∩ x2)
𝜋(x2)

or
𝜋(x1 ∩ x2) = 𝜋(x1) ⋅ 𝜋(x2)

When this condition holds we say that the two measurable subsets are independent of each
other with respect to the probability distribution 𝜋.

The independence of subsets, however, doesn’t tell us anything about how entire conditional
probability distributions behave. For example we might be tempted to consider the case where
every measurable subset x ∈ 𝒳 is independent of x2,

𝜋(x ∣ x2) = 𝜋(x).

In this case the entire conditional probability distribution would reduce to the initial probabil-
ity distribution. Unfortunately a condition this strong is hard to satisfy; in fact it holds only
when x2 = 𝑋 and we’re not really constraining the initial probability distribution in the first
place.

A much more useful notion of independence is when almost all of the conditional probability
distributions in a conditional probability kernel are equivalent, so the conditional behavior is
independent of whichever partition cell, level set, or output point we consider. To rigorously
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define this notion of independence, however, we need the level sets to be particularly well-
behaved.

In general the level sets of a function don’t need to share the same topology. Most functions,
however, exhibit level sets with uniform or almost-uniform topologies. For example the level
sets of the projection function

𝜛 ∶ ℝ2 → ℝ
(𝑥1, 𝑥2) ↦ 𝑥1

are all real lines. Similarly the level sets of the radial function

𝑟 ∶ ℝ2 → ℝ+

(𝑥1, 𝑥2) ↦ √𝑥2
1 + 𝑥2

2

are all circles except for the level set for 𝑟(𝑥1, 𝑥2) = 0 which degenerates to a single point.

When the almost all of the level sets of a function share the same topology then we can treat
them as equivalent representations of some common space 𝐿, which we write as

𝑓−1(𝑦) ≡ 𝐿.

In this case we can, at least in theory, construct conditional probability kernels such that
almost all of the conditional probability distribution are equivalent to some common probability
distribution over 𝐿,

𝜋𝑓
𝑦(x𝑦) = 𝜌(x𝑦).

If the conditional probability kernel that we get by conditioning a probabilty distribution 𝜋
on a function 𝑓 ∶ 𝑋 → 𝑌 behaves in this way then we say that 𝜋 is independent of 𝑓 . Again
this does not mean that the conditional probability distributions 𝜋𝑓

𝑦 behave exactly like 𝜋
but rather that 𝑓∗𝜋-almost all of them behave exactly like each other. In other words the
behavior of 𝜋𝑓

𝑦 is independent of which level set 𝑓−1(𝑦), and hence which output point 𝑦 ∈ 𝑌 ,
we consider.

An immediate consequence of this definition is that if 𝜋 is independent of 𝑓 then any conditional
probability density functions that we construct will not depend on 𝑦 and the product rule
becomes

d𝜋
d𝜇(𝑦, 𝑥𝑦) 𝜇= d𝜋𝑓

d𝜇𝑓,𝜈 (𝑥𝑦) d𝑓∗𝜋
d𝜈 (𝑦).

Here all of the output dependence is isolated to the pushforward probability density func-
tion and all of the level set dependence is isolated to a single conditional probability density
function.

This result suggests a straightforward procedure for constructing probability distributions
that are independent of a given function 𝑓 ∶ 𝑋 → 𝑌 whose level sets 𝑓−1(𝑦) are almost all
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equivalent to some common space 𝐿. Any function 𝑟 ∶ 𝑌 → ℝ+ with 𝕀𝜈[𝑟] = 1 implicitly
defines a probability distribution over 𝑌 and any function 𝑙 ∶ 𝐿 → ℝ+ with 𝕀𝜇𝑓,𝜈 [𝑙] = 1 defines
a probability distribution over the common level set space. The product of these two functions
𝑙(𝑥𝑦) ⋅ 𝑟(𝑦) then defines a probability distribution over 𝑋 that is always independent of 𝑓 .

7 Conclusion

The intuition of conditional probability theory is relatively straightforward: decomposing prob-
ability distributions into simpler pieces. Implementing that intuition with consistent mathe-
matics, however, is much more complicated.

In this chapter we’ve worked through the key foundations of conditional probability theory that
will allow us to apply it to the discrete and continuous spaces that we’ll regularly encounter
in practical applications. That said the notation and terminology of this general theory can
be frustratingly dense.

Fortunately much of this frustration will be resolved in the next chapter where we will apply
conditional probability theory to product spaces and their natural projection functions. In this
particular context much of the notation and terminology simplifies and conditional probability
theory becomes a much more productive tool.

Appendix: “Explicit” Calculations

In this appendix I’ve sequestered some nasty integrals that arise when we try to integrate over
angular level sets to construct the pushforward probability density function and the subse-
quent conditional probability density functions shown in Figure 17. This section is completely
optional and can be ignored without any consequence for future chapters.

Consider the two-dimensional real space 𝑋 = ℝ+ × ℝ+, the Lebesgue probability density
function

𝑝(𝑥1, 𝑥2) =
exp (− 1

2 𝑠2
1

1−𝜌2 (𝑥2 − 2 𝜌 𝑥 𝑦 + 𝑦2))
∫∞
0 ∫∞

0 d𝑥1 d𝑥2 exp (− 1
2 𝑠2

1
1−𝜌2 (𝑥2 − 2 𝜌 𝑥 𝑦 + 𝑦2)) .

= 𝐶 exp (− 1
2 𝑠2

1
1 − 𝜌2 (𝑥2 − 2 𝜌 𝑥 𝑦 + 𝑦2)) ,

and the radial function

𝑓 ∶ 𝑋 → ℝ+

(𝑥1, 𝑥2) ↦ 𝑟 = √𝑥2
1 + 𝑥2

2.
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The level sets of 𝑓 are given by angular arcs of constant radius. Calculations over these level
sets become much easier when we reparameterize 𝑋 into polar coordinates where the radial
output becomes one of the component parameters, and the position along the corresponding
arc becomes the other. This requires the transformation

𝑟 = √𝑥2
1 + 𝑥2

2

𝜃 = arctan (𝑥2
𝑥1

) ,

or equivalently

𝑥1 = 𝑟 cos 𝜃
𝑥2 = 𝑟 sin 𝜃.

Applying the transformation rule for Lebesgue probability density functions gives

𝑝(𝑟, 𝜃) = 𝑝(𝑥1(𝑟, 𝜃), 𝑥2(𝑟, 𝜃)) 1
|det J(𝑟, 𝜃)|

= 𝐶 exp (− 1
2 𝑠2

1
1 − 𝜌2 ((𝑟 cos 𝜃)2 − 2 𝜌 𝑟 cos 𝜃 𝑟 sin 𝜃 + (𝑟 sin 𝜃)2)) 𝑟

= 𝐶 𝑟 exp (− 1
2 𝑠2

1
1 − 𝜌2 (𝑟2 cos2 𝜃 − 2 𝜌 𝑟2 cos 𝜃 sin 𝜃 + 𝑟2 sin2 𝜃))

= 𝐶 𝑟 exp (− 1
2 𝑠2

𝑟2

1 − 𝜌2 (sin2 𝜃 + cos2 𝜃 − 2 𝜌 sin 𝜃 cos 𝜃))

= 𝐶 𝑟 exp (− 1
2 𝑠2

𝑟2

1 − 𝜌2 (1 − 2 𝜌 sin 𝜃 cos 𝜃))

= 𝐶 𝑟 exp (− 1
2 𝑠2

𝑟2

1 − 𝜌2 (1 − 𝜌 sin 2𝜃)) .

In theory we can construct the pushforward probability density function over the radial outputs
of 𝑓 by integrating out the angular parameter,

𝑝(𝑟) = ∫
𝜋
2

0
d𝜃 𝑝(𝑟, 𝜃)

= ∫
𝜋
2

0
d𝜃 𝐶 𝑟 exp (− 1

2 𝑠2
𝑟2

1 − 𝜌2 (1 − 𝜌 sin 2𝜃))

= 𝐶 𝑟 ∫
𝜋
2

0
d𝜃 exp (− 1

2 𝑠2
𝑟2

1 − 𝜌2 ) exp (+ 1
2 𝑠2

𝑟2

1 − 𝜌2 𝜌 sin 2𝜃)

= 𝐶 𝑟 exp (− 1
2 𝑠2

𝑟2

1 − 𝜌2 ) ∫
𝜋
2

0
d𝜃 exp (+ 𝑟2

2 𝑠2
𝜌

1 − 𝜌2 sin 2𝜃)

= 𝐶 𝑟 exp (− 1
2 𝑠2

𝑟2

1 − 𝜌2 ) 𝜄(𝑟, 𝜌, 𝜃).
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Conveniently this integral can be reduced to special functions, albeit not necessarily common
ones,

𝜄(𝑟, 𝜌, 𝜃) = ∫
𝜋
2

0
d𝜃 exp (+ 𝑟2

2 𝑠2
𝜌

1 − 𝜌2 sin 2𝜃)

= 1
2 ∫

𝜋

0
d𝜙 exp (+ 𝑟2

2 𝑠2
𝜌

1 − 𝜌2 sin 𝜙)

= 𝜋
2 (𝐼0 ( 𝑟2

2 𝑠2
𝜌

1 − 𝜌2 ) + 𝐿0 ( 𝑟2

2 𝑠2
𝜌

1 − 𝜌2 ))

where 𝐼0(𝑥) is the zeroth-order modified Bessel function of the first kind and 𝐿0(𝑥) is
the zeroth-order modified Struve function.

Using this result the radial probability density function becomes

𝑝(𝑟) = 𝐶 𝑟 exp (− 1
2 𝑠2

𝑟2

1 − 𝜌2 ) 𝜄(𝑟, 𝜌, 𝜃)

= 𝜋
2 𝐶 𝑟 exp (− 1

2 𝑠2
𝑟2

1 − 𝜌2 ) (𝐼0 ( 𝑟2

2 𝑠2
𝜌

1 − 𝜌2 ) + 𝐿0 ( 𝑟2

2 𝑠2
𝜌

1 − 𝜌2 )) .

We can now use this pushforward probability density function to construct the conditional
probability density function over the radial level sets,

𝑝(𝑥1, 𝑥2 ∣ 𝑟) = 𝑝(𝑥1, 𝑥2)
𝑝(𝑟) .

That said the conditional probability density functions simplify quite a bit if we work in polar
coordinates where the angular coordinate completely parameterizes the level sets,

𝑝(𝜃 ∣ 𝑟) = 𝑝(𝑟, 𝜃 ∣ 𝑟)

= 𝑝(𝑟, 𝜃)
𝑝(𝑟)

=
𝐶 𝑟 exp (− 1

2 𝑠2
𝑟2

1−𝜌2 (1 − 𝜌 sin 2𝜃))
𝜋
2 𝐶 𝑟 exp (− 1

2 𝑠2
𝑟2

1−𝜌2 ) (𝐼0 ( 𝑟2
2 𝑠2

𝜌
1−𝜌2 ) + 𝐿0 ( 𝑟2

2 𝑠2
𝜌

1−𝜌2 ))

=
exp (− 1

2 𝑠2
𝑟2

1−𝜌2 (1 − 𝜌 sin 2𝜃))
𝜋
2 exp (− 1

2 𝑠2
𝑟2

1−𝜌2 ) (𝐼0 ( 𝑟2
2 𝑠2

𝜌
1−𝜌2 ) + 𝐿0 ( 𝑟2

2 𝑠2
𝜌

1−𝜌2 ))

= 2
𝜋

exp (− 1
2 𝑠2

𝑟2
1−𝜌2 (1 − 𝜌 sin 2𝜃) + 1

2 𝑠2
𝑟2

1−𝜌2 )
𝐼0 ( 𝑟2

2 𝑠2
𝜌

1−𝜌2 ) + 𝐿0 ( 𝑟2
2 𝑠2

𝜌
1−𝜌2 )

= 2
𝜋

exp (− 1
2 𝑠2

𝑟2
1−𝜌2 (−𝜌 sin 2𝜃))

𝐼0 ( 𝑟2
2 𝑠2

𝜌
1−𝜌2 ) + 𝐿0 ( 𝑟2

2 𝑠2
𝜌

1−𝜌2 )

= 2
𝜋

exp (+ 𝑟2
2 𝑠2

𝜌
1−𝜌2 sin 2𝜃)

𝐼0 ( 𝑟2
2 𝑠2

𝜌
1−𝜌2 ) + 𝐿0 ( 𝑟2

2 𝑠2
𝜌

1−𝜌2 )
.
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Note that this construction ensures that each individual conditional probability density func-
tion is properly normalized,

∫
𝜋
2

0
d𝜃 𝑝(𝜃 ∣ 𝑟) = ∫

𝜋
2

0
d𝜃 2

𝜋
exp (+𝛼 sin 2𝜃)
𝐼0 (𝛼) + 𝐿0 (𝛼)

= 2
𝜋

1
𝐼0 (𝛼) + 𝐿0 (𝛼) ∫

𝜋
2

0
d𝜃 exp (+𝛼 sin 2𝜃)

= 1
𝜋

1
𝐼0 (𝛼) + 𝐿0 (𝛼) ∫

𝜋

0
d𝜙 exp (+𝛼 sin 𝜙)

= 1
𝜋

1
𝐼0 (𝛼) + 𝐿0 (𝛼)𝜋 (𝐼0 (𝛼) + 𝐿0 (𝛼))

= 𝜋
𝜋

𝐼0 (𝛼) + 𝐿0 (𝛼)
𝐼0 (𝛼) + 𝐿0 (𝛼)

= 1,

where
𝛼 = 𝑟2

2 𝑠2
𝜌

1 − 𝜌2 .
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