
Conditional Probability Theory

Michael Betancourt

March 25, 2022

Conditional probability theory provides a rigorous way to decompose probability dis-
tributions over an ambient space X into a collection of probability distributions over sub-
spaces of X. This can helpful for calculations – reducing a complicated calculation over
all of X into a sequence of simpler calculations over the smaller subspaces – as well as the
construction of useful probability distributions – building up high-dimensional probabil-
ity distributions by composing together more manageable, lower-dimensional conditional
probability distributions.

Throughout we will consider an ambient space X equipped with a σ-algebra X and a
probability distribution of interest π,

π : X → [0, 1] ⊂ R
A 7→ Pπ[A] .

We begin with partitions that mathematically decompose X into subspaces and then con-
struct decompositions of π over the subspaces defined by increasingly complicated parti-
tions.

Because general probability distributions are difficult to visualize we will occasionally
appeal the finite ambient space X = {x1, . . . , x16} to demonstrate some of the concepts
we introduce. Because any probability distribution over a finite space can be completely
specified by the probability allocated to the individual elements, Pπ[xi], we can visualize
the entire distribution with those atomic probabilities (Figure 1).

1 Partitions

In order to rigorously define how to decompose a probability distribution we need to first
consider how to rigorously decompose the ambient space X into subsets. Recall that the
space of all subsets is referred to as the power set and denoted by 2X .

Two sets A ∈ 2X and B ∈ 2X that do not overlap, A∩B = ∅, are referred to as disjoint.
A partition of X (Figure 2b) is a collection of sets

P ⊂ 2X
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Figure 1: Any probability distribution π over the finite ambient space X = {x1, . . . , x16}
can specified by the atomic probabilities Pπ[xi]. The probability of any set is given by a
finite sum of these atomic probabilities Pπ[A] =

∑
xi∈A Pπ[xi].

that are mutually disjoint,

B ∈ P, B′ ∈ P
B ∩B′ = ∅,

and whose union covers the full ambient space⋃
B∈P

B = X.

A collection of sets that cover X but intersect with each other do not form a valid
partition (Figure 2c), nor does a collection of disjoint sets that don’t cover all of X (Figure
2d). A measurable partition consists of disjoint sets in the assumed σ-algebra, P ⊂ X .

I will refer to the individual sets that form a partition as cells. A partition can con-
tain a finite number of cells, a countably infinite number of cells or even an uncountably
infinite number of cells. Initially, however, we will consider partitions with at most a
countably infinite number of cells. I will refer to partitions with a finite, countably infinite,
and uncountable infinite number of cells as finite, countable, and uncountable partitions,
respectively.

A finite partition can always be defined as an explicit list of sets, but this isn’t practical
for countable or uncountable partitions which would require infinitely long lists. In all of
these cases, however, we can specify a partition implicitly through an appropriate function.
To motivate the kind of function we need to implicitly specify a partition let’s first consider
a finite partition defined as an explicit list,

P = {B1, . . . , Bn, . . . , BN}.
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Figure 2: A partition is a decomposition of (a) an ambient space X into (b) a collection of
disjoint sets. (c) Overlapping sets that cover the ambient do not form a proper partition,
nor do (d) disjoint sets that do not fully cover the ambient space. A measurable partition
consists of disjoint sets from the assumed σ-algebra X .
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ιP(x) = B1

χP(B1) = 1

$P(x) = χP ◦ ιP(x) = 1

x′

ιP(x′) = B3
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Figure 3: Any finite partition of the ambient space, for example P =
{B1, B2, B3, B4, B5, B6}, implicitly defines three functions. The function ιP maps each
point in the ambient space to the partition cell that contains it while the function χP maps
each partition cell to its integer index. The composition $P = χP ◦ ιP maps each point
directly to the corresponding index.

In this case we’ve numerically labeled or indexed the cells with the integers {1, . . . , N}.
More formally we can define a one-to-one index function that maps each cell to its corre-
sponding integer index,

χP : P → {1, . . . , N}
Bn 7→ n .

At the same time we can also define an inclusion function that maps each point in the
ambient space x ∈ X into the partition cell that contains it,

ιP : X → P
x 7→ {Bn ∈ P | x ∈ Bn}.

Composing these two functions together then defines a map from points in the ambient
space to partition cell indices (Figure 3)

$P = χP ◦ ιP : X → {1, . . . , N}
x 7→ {n ∈ {1, . . . , N} | x ∈ Bn ∈ P}.

Because the partition cells are disjoint and cover the entire ambient space each point
x ∈ X falls into one and only one partition cell and hence is associated with one and only
one index. Consequently $P is a surjective function. More importantly the preimage of
this function for a given index, the set of all input points with the same function output,
completely reconstructs the corresponding partition cell:

$−1P (n) = {x ∈ X | $P(x) = n} = Bn.
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Figure 4: (a) The function $P maps points in the ambient space x ∈ X to the indices
of the partition cells that contain them. (b) The fibers $−1P (n) map each index to all
of the points contained in the corresponding partition cell. The set of all fibers, here
{$−1P (1), $−1P (2), $−1P (3), $−1P (4)}, completely reconstructs the partition that defines $P ,
P = {B1, B2, B3, B4}.

The preimage of a surjective function is also referred to as a level set, i.e. the set
of all input points with the same function output or “level”, or a fiber of that function.
Consequently we can associate the partition cells in P with the fibers of the function $P
(Figure 4),

P = {B1 = $−1P (1), . . . , Bn = $−1P (n), . . . , BN = $−1P (N)}!

In other words the finite partition P can be explicitly defined as a list of disjoint
sets or implicitly defined by a complementary surjective function $P . At the same time
surjective functions can be used to implicitly define any partition, including countable and
uncountable partitions which cannot be explicitly defined by a list of sets.

Generally any surjective function $ : X → Y decomposes the input space X into fibers.
Each fiber $−1(y) is mutually disjoint with all other fibers and defines a cell of the implicit
partition. The union of all of these fibers for every point in the output space completely
recovers the ambient space,

X =
⋃
y∈Y

$−1(y).

Consequently the collection of these fibers defines a partition P$ of X.
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If the output space Y contains a finite number of elements then the fibers of $ define a
finite partition (Figure 5). Likewise if Y contains a countably infinite number of elements
then the fibers define a countable partition, and if Y contains an uncountably infinite
number of elements then the fibers define an uncountable partition (Figure 6). If the index
space is a subset of the ambient space, $ : X → Y ⊂ X then we can also picture the
indices as base points to which the fibers are attached (Figure 6c).

To demonstrate uncountable partitions let’s consider a few examples over the product
space X = X1 ×X2, where both X1 and X2 are copies of the real line R. The surjective
function

$ : X1 ×X2 → X1

(x1, x2) 7→ x1

implicitly defines a partition that decomposes X into an uncountable number of copies of
X2, each of which can be visualized by a vertical line (Figure 7a). Similarly the surjective
function

$ : X1 ×X2 → R

(x1, x2) 7→ r =
√
x21 + x22

implicitly defines a partition that decomposes X into an uncountable number of concentric
arcs, each with a fixed radii (Figure 7b).

When $ is not only surjective but also measurable then the fibers will be elements of
the σ-algebra of the input space,

$−1(y) ∈ X .

Consequently each partition cell, and hence the partition itself, will be measurable.

2 Conditioning on Explicit, Countable Partitions

Whether defined explicitly or implicitly, a partition decomposes the ambient space X into a
collection of non-overlapping subsets. Now we can consider how to decompose a probability
distribution over X into a collection of probability distributions over those subsets. First
let’s see what we can do with a countable partition P explicitly defined as a list of sets.

2.1 The Law of Total Probability

Kolmogorov’s axioms define a probability distribution by its consistent allocation of allo-
cation of probability over measurable sets A ∈ X . In order to decompose a probability
distribution we need to be able to decompose every measurable set, and then the probability
allocated to that set.
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Figure 5: On a finite ambient space (a) a surjective function $ (b) organizes the individual
elements xi into a table (c) where each row corresponds to a fiber $−1(n) and hence a cell
of the partition implicitly defined by $.
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Figure 6: A surjective function $ : X → Y partitions the (a) input space X (b) into fibers,
one for each point in the output space Y . (c) If Y ⊂ X then $ can be interpreted as a
projection, with each fiber attached to the point y ∈ X.
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Figure 7: (a) The surjective function $ : (x1, x2) 7→ x1 decomposes the ambient space
X1 × X2 into copies of X2, each labeled by a point x1 ∈ X1. (b) Likewise the surjective
function $ : (x1, x2) 7→

√
x21 + x22 decomposes the ambient space into concentric arcs.

Any measurable set A ∈ X can be decomposed into it’s intersections with the cells in
a partition (Figure 8)

A =
⋃
B∈P

A ∩B.

Because the partition cells are mutually disjoint these intersections will also be mutually
disjoint: if B,B′ ∈ P are two distinct partition cells then

(A ∩B) ∩ (A ∩B′) = (A ∩B) ∩ (B′ ∩A)

= A ∩ (B ∩B′) ∩A
= A ∩ ∅ ∩A
= ∅.

If the partition P is countable then any measurable set A ∈ X will decompose into a
countable number of intersections with the countable number of partition cells. Moreover
because, by definition, σ-algebras are closed under intersections if the partition is measur-
able then each of these intersections will also be measurable. Consequently we can apply
the countable additivity of probability distributions to the decomposition of a set induced
by a measurable, countable partition.
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Figure 8: (a) Given the partition P = {B1, B2, B3, B4} (b) a measurable set A ∈ X (c)
decomposes into the disjoint intersections, A = (A ∩B1) ∪ (A ∩B2) ∪ (A ∩B3) ∪ (A ∩B4)
Here A ∩B1 = A ∩B4 = ∅.
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In other words we can decompose the probability allocated to A into a sum of the
probabilities allocated to the disjoint partition intersections,

Pπ[A] = Pπ[∪B∈PA ∩B]

=
∑
B∈P

Pπ[A ∩B].

This decomposition is referred to as the law of total probability.

2.2 Conditional Probabilities

Once we can decompose the individual probabilities allocated to measurable sets we can
consider how to decompose entire probability distributions. To make our first steps to-
wards this decomposition more manageable let’s begin with a simplifying restriction on
our partition.

I will refer to a partition where every cell is not only measurable but also allocated a
non-zero probability by π

Pπ[B] > 0 ∀B ∈ P,

as a π-non-null partition.
When a partition P is countable and π-non-null we can always multiply and divide by

the non-zero cell probabilities. Doing this within in each term of the law of total probability
gives

Pπ[A] =
∑
B∈P

Pπ[A ∩B]

=
∑
B∈P

Pπ[A ∩B] · Pπ[B]

Pπ[B]

=
∑
B∈P

Pπ[A ∩B]

Pπ[B]
· Pπ[B]

≡
∑
B∈P

Pπ[A | B] · Pπ[B],

where each conditional probability

Pπ[A | B] =
Pπ[A ∩B]

Pπ[B]
.

quantifies how much of the total probability allocated to the partition cell, Pπ[B], is dis-
tributed to the overlap of A with that cell, Pπ[A ∩B] (Figure 9).
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Pπ
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A ∩B

Pπ
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Figure 9: The conditional probability of a measurable set A given a measurable set B
quantifies the proportion of probability allocated to the intersection A ∩B relative to the
total probability allocated to the conditioning set B.

By definition any measurable set A that doesn’t overlap with the conditioning set B is
allocated zero conditional probability,

Pπ[A | B] =
Pπ[A ∩B]

Pπ[B]

=
Pπ[∅]
Pπ[B]

=
0

Pπ[B]

= 0.

At the same time any measurable set that completely overlaps with the conditioning set,
A ∩B = B is allocated full conditional probability,

Pπ[A | B]

=
Pπ[A ∩B]

Pπ[B]

=
Pπ[B]

Pπ[B]

= 1.

Conditional probabilities look suspiciously like probabilities restricted to the scope of
the conditioning set. With a little more work we can show that this suspicion is correct.
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2.3 Conditional Probability Distributions

Let’s collect the conditional probabilities for all measurable sets A ∈ X and all conditioning
sets B ∈ P into a single mathematical object. A conditional probability distribution with
respect to a π-non-null, countable partition P is a binary function that maps each set A
and cell B ∈ P into the corresponding conditional probabilities,

Pπ|P [· | ·] : X × P → [0, 1] ⊂ R
A,B 7→ Pπ[A | B].

Partially evaluating this binary function on a measurable set A ∈ X in its first argument
results in a measurable, unary function from each partition cell to conditional probabilities
of A given that cell,

Pπ|P [A | ·] : P → [0, 1] ⊂ R
B 7→ Pπ[A | B],

In words this function quantifies how much the unconditional probability allocated to A
contributes to the unconditional probability allocated to each partition cell.

On the other hand partially evaluating this binary function on a partition cell B ∈ P
in its second argument defines what superficially looks like a probability distribution over
X,

Pπ|P [· | B] : X → [0, 1] ⊂ R
A 7→ Pπ[A | B].

To confirm that this is indeed a probability distribution we have to verify all of the Kol-
mogorov axioms.

Immediately the inputs and output spaces of this unary function immediately satisfy
the first Kolmogorov axiom: Pπ|P [· | B] maps measurable sets to probabilities.

In order to satisfy the second Kolmogorov axiom the probability allocated to the entire
ambient set must be one. Indeed

Pπ|P [X | B] =
Pπ[X ∩B]

Pπ[B]

=
Pπ[B]

Pπ[B]

= 1.

Finally we need to satisfy countable additivity. For any countable collection of disjoint sets
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{A1, ..., An, . . .} with An ∩An′ = ∅ we have

Pπ|P [∪nAn | B] =
Pπ[(∪nAn) ∩B]

Pπ[B]

=
Pπ[∪n(An ∩B)]

Pπ[B]

=

∑
n Pπ[An ∩B]

Pπ[B]

=
∑
n

Pπ[An ∩B]

Pπ[B]

=
∑
n

Pπ[An | B]

as needed.
With all three Kolmogorov axioms verified we can now formally state that for each B ∈

P the partial evaluation Pπ|P [· | B] defines a probability distribution over the ambient space
X. Consequently we can interpret a conditional probability distribution as a collection of
probability distributions over X, one for each cell in the partition.

Upon closer inspection, however, these probability distributions are a little bit odd Any
set that doesn’t intersect with B at all is allocated zero probability by Pπ|P [· | B]. Indeed
all of the probability is focused onto the conditioning set B itself,

Pπ|P [B | B] =
Pπ[B ∩B]

Pπ[B]

=
Pπ[B]

Pπ[B]

= 1!

In other words each of these probability distributions concentrates entirely within the
conditioning set.

A natural question is then whether or not these probability distributions that concen-
trate into each conditioning set actually well define probability distributions over those
sets.

To answer this question we first need to define an appropriate σ-algebra over each
partition cell B ⊂ X. Fortunately there is natural way to restrict to σ-algebra over the
ambient space into a σ-algebra over any measurable subset. The subspace σ-algebra over
B is defined by the intersection of each A ∈ X with B,

XB = {A ∩B ∀A ∈ X}.

In other words every set in the subspace σ-algebra C ∈ XB can be written as the intersection
of some set in the ambient σ-algebra A ∈ X and the defining subset B, C = A ∩B.
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Restricting from the ambient σ-algebra X to the subspace σ-algebra XB the partial
evaluation Pπ|P [· | B] defines a unary function

Pπ|P [· | B] : XB → [0, 1] ⊂ R
C 7→ Pπ[A | B]

with
Pπ|P [B | B] = 1

and
Pπ|P [∪nCn | B] =

∑
n

Pπ|P [Cn | B],

which is exactly a probability distribution over B!
Consequently we have two valid interpretations of a conditional probability distribution.

Firstly we can interpret a conditional probability distribution as a collection of probability
distributions over the full ambient space X, each of which concentrates within one of
the partition cells B ∈ P, (Figure 10a). Alternatively we can interpret a conditional
probability distribution as a collection of probability distributions over the partition cells
themselves (Figure 10b). While the latter interpretation is more common, the former is
more appropriate for technical results.

2.4 Marginal Probability Distributions

A critical limitation of conditional probability distributions is that they do not contain
enough information to fully reconstruct a probability distribution π. In particular the law
of total probability,

Pπ[A] =
∑
B∈P

Pπ[A | B] · Pπ[B],

requires not just the conditional probabilities allocated by a conditional probability distri-
bution but also the unconditional probabilities of each partition cell, Pπ[B].

As we were able to organize the conditional probabilities into a conditional probability
distribution we can also organize these unconditional cell probabilities into a probability
distribution over the partition P. When P is countable then we can define the marginal
probability distribution with respect to P as the function

PπP : 2P → [0, 1] ⊂ R

with
PπP [A] =

∑
B∈A

Pπ[B].

The term “marginal” here dates back to early probability theory applications where
the ambient space X consisted of a finite number of elements that could be arranged into a
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Figure 10: Conditional probability distributions can be interpreted in two equally valid
ways. (a) We can interpret a conditional probability distribution Pπ|P [xi | n] as collection
of probability distributions over the ambient space that concentrate on each partition cell.
Here Pπ|P [xi | 2] allocates all of its probability to the elements in {x5, x6, x7, x8} = B2.
(b) Alternatively we can interpret a Pπ|P [xi | n] as a collection of probability distributions
over each partition cell directly. From this perspective Pπ|P [xi | 2] can allocate its total
probability to only the elements {x5, x6, x7, x8} = B2.
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table with a separate row for each partition cell. Summing over each row would then give
the cell probabilities which could be written in the physical margins of the table (Figure
11).

Once we’ve constructed a marginal probability distribution the law of total probability
can be written as a marginal expectation value,

Pπ[A] =
∑
B∈P

Pπ[A | B] · Pπ[B]

=
∑
B∈P

Pπ[A | B] · PπP [B]

= EπP [pA],

where pA is the partial evaluation of the conditional probability distribution

pA(B) ≡ Pπ|P [A | B].

Consequently we can reconstruct all of the behaviors of a probability distribution π from
the conditional probability distribution and marginal probability distribution induced by
any π-non-null, countable partition. The marginal probability distribution quantifies how
the total probability is allocated to each partition cell, and the conditional probability
distribution quantifies how those allocations are further distributed within the measurable
subsets of those cells (Figure 12).

In other words every π-non-null, countable partition allows us to decompose π into a
conditional probability distribution and a marginal probability distribution (Figure 13).
When working within the partition cells is more practical then working across the en-
tire ambient space this decomposition can make it easier to implement the probabilistic
operations defined by π.

At the same time given a π-non-null, countable partition of the ambient space X any
choice of a conditional probability distribution and marginal probability distribution implic-
itly defines a probability distribution over X. This provides a way to build up probability
distributions over complex spaces from simpler probability distributions across and within
the partition cells. In this case we say that a conditional probability distribution lifts the
marginal probability distribution across the cell partitions into a probability distribution
over the full ambient space X.

2.5 Independence

Conditional probabilities also allow us to provide some intuition for the subtle concept of
independence.

Two overlapping, measurable sets A ∈ X and B ∈ X are defined to be independent
with respect to a probability distribution π if

Pπ[A ∩B] = Pπ[A] · Pπ[B].
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Figure 11: The term “marginal probability” for the probability of a partition cell originates
in applications over ambient spaces with a finite number of elements. In this case we can
arrange (a) the finite elements X = {x1, . . . , x16} into (b) separate rows for each partition
cell {B1, . . . , B5} to form a table. (c) Summing over the probabilities allocated to the
elements in each row gives the cell probabilities which can written in the “margins” of the
table.
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Figure 12: Marginal probability distributions quantify how much of the total probability
Pπ[X] = 1 is allocated to each of the partition cells. Conditional probability distributions
then quantify how these allocations are distributed within each partition cell. For this
finite ambient space unconditional probabilities can be reconstructed as Pπ[xi] = Pπ|P [xi |
n] · PπP [n].
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Figure 13: Given a π-non-null, countable partition, here P = {B1, . . . , B4}, of the ambient
space, here X = {x1, . . . , x16}, a probability distribution Pπ[xi] decomposes into a marginal
probability distribution PπP [n] and a conditional probability distribution Pπ|P [xi | n].
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The utility of this definition may not be immediately obvious but it clarifies a bit when we
consider conditional probabilities.

If A and B are independent with respect to π and Pπ[B] > 0 then

Pπ[A | B] =
Pπ[A ∩B]

Pπ[B]

=
Pπ[A] · Pπ[B]

Pπ[B]

= Pπ[A].

Similarly if Pπ[A] > 0 then

Pπ[B | A] =
Pπ[B ∩A]

Pπ[A]

=
Pπ[B] · Pπ[A]

Pπ[A]

= Pπ[B].

In other words when two sets are independent conditioning on one the other doesn’t affect
how probabilities are allocated to the other.

Similarly if A is independent of all cells in partition,

Pπ[A ∩B] = Pπ[A] · Pπ[B], ∀B ∈ P,

then
Pπ[B | A] = Pπ[B], ∀B ∈ P.

In this case we can say that A is independent of the entire partition P.

3 Conditioning On Implicit, Countable Partitions

The entire construction of conditional and marginal probability distributions becomes par-
ticularly elegant when we define partitions implicitly through the fibers of a surjective
function.

Recall that a surjective function $ : X → Y implicitly defines a partition of the ambient
space X where each partition cell is given by a fiber $−1(y) ⊂ X. When Y is countable
there will be a countable number of fibers, and consequently this partition will also be
countable. Similarly when $ is measurable the partition will also be measurable so that

$−1(y) ∈ X , ∀y ∈ Y,

and we can allocate probabilities to the fibers. Moreover if every fiber is allocated a non-
zero probability

Pπ[$−1(y)] > 0, ∀y ∈ Y,
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then the partition will be π-non null.
In other words every surjective and measurable function from the ambient space to a

countable output space defines a countable, measurable partition. Some of these functions
will also define π-non null partitions, which then allow us to decompose π into a conditional
probability distribution and a marginal probability distribution.

Given the probability distribution π the function $ defines a conditional probability
distribution

Pπ|$[· | ·] : X × Y → [0, 1] ⊂ R
A, y 7→ Pπ[A | $−1(y)].

For each A ∈ X the partial evaluation

Pπ|$[A | ·] : Y → [0, 1]

defines a measurable function, and for each y ∈ Y the partial evaluation

Pπ|$[· | y] : X → [0, 1]

defines a probability distribution that concentrates on the fiber,

Pπ|$[$−1(y) | y] = 1.

Alternatively we can interpret the second partial evaluation as a probability distribution
over the fiber,

Pπ|$[· | y] : Fy → [0, 1],

where Fy is the subspace σ-algebra over $−1(y). Consequently we can think about the
conditional probability distribution induced by $ as a collection of probability distribu-
tions over X that concentrate on each fiber or more simply as a collection of probability
distributions over each fiber.

At the same time the marginal probability distribution over the countable output space
Y is given by the pushforward of π along $, $∗π. In particular the marginal probability
of y ∈ Y is equal to the probability of the corresponding fiber,

P$∗π[y] = Pπ[$−1(y)].

Consequently $ induces a π-non null partition if and only if the pushforward distribution
$∗π allocates finite probability to every element of Y .

Together we can interpret the marginal probability distribution as quantifying how
much probability π allocates to each fiber, and the conditional probability distribution as
quantifying how much these allocations are further distribution within each fiber.
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From this perspective the law of total probability can be formalized as an expectation
with respect to the pushforward distribution,

Pπ[A] =
∑
y∈Y

Pπ|$[A | y] · Pπ[$−1(y)]

=
∑
y∈Y

Pπ|$[A | y] · P$∗π[y]

= E$∗π[pA]

where

pA : y → R
y 7→ Pπ|$[A | y].

The law of total probability also generalizes to the law of total expectation: for any
function f : X → R

Eπ[f ] = E$∗π[ef ]

where ef : Y → R is defined by the expectation values of f with respect to the probability
distributions Pπ|$[· | y]. The law of total expectation is also referred to as the law of
iterated expectations.

4 Conditioning on General Implicit Partitions

So far we have been able to define conditional probability distributions for π-non-null,
countable partitions. While this construction provides useful intuition it unfortunately
doesn’t generalize to the continuous spaces that dominate practical applications.

Consider for example a measurable, surjective function $ : X → Y where both the
input space X and output space Y are continuous spaces with an uncountably infinite
number of elements. This function implicitly defines a partition P$ of the input space X
into an uncountably infinite number of fibers $−1(y)

As in the countable case we can decompose any measurable set A ∈ X into it’s inter-
sections with these fibers (Figure 14),

A =
⋃
y∈Y

A ∩$−1(y).

Because there are an uncountably infinite number of intersections, however, we cannot write
Pπ[A] as a sum over the intersection probabilities A∩$−1(y). Remember that probability
distributions are defined to have countable additivity but not uncountable additivity! In
other words we can’t derive a law of total probability for an uncountably infinite partition.
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A

X

(a)

A ∩$−1(y)

X

Yy

(b)

Figure 14: Given a uncountable partition (a) a set will (b) decomposed into an uncountable
number of fiber intersections.

At the same time for most probability distributions the probability allocated to all of
the fibers, and any subset of the fibers, will be zero,

Pπ[$−1(y)] = PπP [y] = 0.

Consequently we can’t try to maneuver around the lack of a law of total probability and
directly define conditional probabilities as the ratio

Pπ|P [A | y] =
Pπ[A ∩$−1(y)]

Pπ[$−1(y)]

because we’d be left with an indefinite 0/0 result.
Is there hope? Can we define conditional probability distributions over continuous

spaces? Fortunately the answer is yes. The key is that while we cannot sum over the fiber
probabilities we can take expectations over them!

Given a measurable, surjective function $ : X → Y and probability distribution π one
can show that in addition to the pushforward distribution

P$∗π : Y → [0, 1],

there exists a binary function

Pπ|$[· | ·] : X × Y → [0, 1] ⊂ R
A, y 7→ Pπ[A | $−1(y)],
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pA(y) = Pπ|$[A | y]

X

Yy

Figure 15: Although we can’t sum over the vanishing probabilities allocated to the uncount-
able number of intersections with a measurable set A ∈ X and the fibers in an uncountable
partition, we can take an expectation over the relative fiber probabilities, Pπ[A] = E$∗π[pA]

that not only yields a measurable function for any partial evaluation on the first argument,

Pπ|$[A | ·] : Y → [0, 1], ∀A ∈ X ,

and a probability distribution that concentrates on the corresponding fiber for any partial
evaluation on the second argument,

Pπ|$[· | y] : X → [0, 1], ∀y ∈ Y

with
Pπ|$[$−1(y) | y] = 1,

but also satisfies (Figure 15)
Pπ[A] = E$∗π[pA]

where

pA : y → R
y 7→ Pπ|$[A | y].

In other words the probability distribution π can be completely specified by this binary
function Pπ|$ and the pushforward probability distribution P$∗π.
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This latter property also implies that Pπ|$ satisfies a law of total expectation: for any
function f : X → R

Eπ[f ] = E$∗π[ef ]

where ef : X → Y is the expectation of f with respect to the probability distribution
Pπ|$[· | y].

Any binary function satisfying these properties is denoted a disintegration of the prob-
ability distribution π or, less impressively, a regular conditional probability distribution.
Unlike in the countable case, a function $ and probability distribution π do not uniquely
define a disintegration; instead there will be an infinite number of compatible disintegra-
tions. That said the differences between these compatible disintegrations are confined to
set of zero probability and so they all define equivalent probabilities and expectation values.
Consequently in practice we only ever have to consider a single disintegration.

As in the countable case we can interpret a disintegration – regular conditional prob-
ability distribution is undoubtably a more proper term but disintegration is just so fun
to say – as a collection of probability distributions defined over each of the fibers $−1(y).
Once again the pushforward distribution determines how the total probability is allocated
across the fibers while the disintegration determines how those allocated probabilities are
further distributed along the fibers.

5 Conditional Probability Density Functions

Given a reference Lebesgue measure λ over the ambient space we can define the probability
density function

π(x) =
dπ

dλ
(x) : X → R+,

from which we can evaluate expectation values as

Eπ[f(x)] = Eλ[π · f ]

=

∫
dxπ(x) f(x).

At the same time given the measurable function$ : X → Y we can define a pushforward
reference measure $∗λ over Y . This allows us to define a probability density function for
the pushforward of π,

π(y) =
d$∗π

d$∗λ
(y) : Y → R+.

Finally each partial evaluation of a disintegration on its second argument defines the
probability density function

πy(x) =
dπ$[· | y]

dλ
(x) : X → R+
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that vanishes outside of the corresponding fiber,

π(x | y) = 0∀x /∈ $−1(y).

The collection of these probability density functions defines a conditional probability density
function

π(x | y) : X × Y → R+.

When Y is a finite space then these component probability density functions are given
by truncating π(x) to each fiber (Figure 16b),

πy(x) =
π(x)∫

$−1(y) dxπ(x)

=
π(x)

Pπ[$−1(y)]
.

The collection of these truncated probability density functions then defines a conditional
probability density function (Figure 16c).

If Y is an uncountably infinite space then we can’t define these component probability
density functions as a truncation of π(x) to each fiber because Pπ[$−1(y)] = 0. Instead the
component probability density functions reduce to a ratio of probability density functions
(Figure 17b),

πy(x) =
π(x)

π(y)
.

The collection of these restricted probability density functions then defines a conditional
probability density function (Figure 17b).

Any well-defined conditional probability density function must satisfy the law of total
expectation. In particular for all measurable functions f : X → R with finite expectation
value we must have

Eπ[f ] = E$∗π[ef ]∫
X

dxπ(x) f(x) =

∫
Y

dy π(y) ef (y)∫
X

dxπ(x) f(x) =

∫
Y

dy π(y)

∫
A∩$−1(y)

dxπ(x | y) f(x)∫
X

dxπ(x) f(x) =

∫
Y

dy

∫
A∩$−1(y)

dxπ(y)π(x | y) f(x)

This looks a bit ungainly, but it simplifies if we focus on the fibers. Any point x ∈ X
can be decomposed into a point y ∈ Y and a point along the corresponding fiber zy ∈ Fy =
$−1(y),

x = (y, zy).

26



π(x)

X

(a)

X

πy(x)

Y = {1, 2, 3, 4}
n = 1 n = 2 n = 3

y

n = 4

(b)

X

π(x | n)

Y = {1, 2, 3, 4}
n = 1 n = 2 n = 3 n = 4

π(n)

(c)

Figure 16: (a) Given a reference measure a probability distribution π over X defines
a probability density function that can be used to evaluate expectation values. (b) The
truncation of π(x) to the cell of a finite partition defines a probability density function
over that cell. (c) The collection of these truncated probability density functions defines a
conditional probability density funtion.
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π(x)

X

(a)

πy(x)

X

Y

y

(b)

π(x | y)

X

Y
π(y)

(c)

Figure 17: (a) Given a reference measure a probability distribution π over X defines a
probability density function that can be used to evaluate expectation values. (b) An
uncountable partition disintegrates π(x) into a collection of probability density functions
that concentrate on each of the uncountably infinite number of fibers. (c) This union of
this collection defines a conditional probability density function which when coupled with
the corresponding marginal probability density function completely recovers π(x).
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In general this isn’t an ordered pair like we would encounter in a product space because
the space in which the second component takes values depends on the the choice of the
value of the first component. Mathematically this is referred to a semi-direct product.

From this perspective the law of total expectation requires∫
X

dxπ(x) f(x) =

∫
Y

dy

∫
A∩$−1(y)

dxπ(y)π(x | y) f(x)∫
X

dxπ(x) f(x) =

∫
Y

dy

∫
Fy

dzy π(y)π(zy | y) f(y, zy)∫
Y

dy

∫
Fy

dzy π(y, zy) f(y, zy) =

∫
Y

dy

∫
Fy

dzy π(y)π(zy | y) f(x),

or
π(y, zy) = π(y)π(zy | y)

for short.
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